Synthesis Modelling and Characterization of 2D Materials and their Heterostructures

Synthesis  Modelling and Characterization of 2D Materials and their Heterostructures
Author: Eui-Hyeok Yang,Dibakar Datta,Junjun Ding,Grzegorz Hader
Publsiher: Elsevier
Total Pages: 534
Release: 2020-06-19
ISBN 10: 0128184760
ISBN 13: 9780128184769
Language: EN, FR, DE, ES & NL

Synthesis Modelling and Characterization of 2D Materials and their Heterostructures Book Review:

Synthesis, Modelling and Characterization of 2D Materials and Their Heterostructures provides a detailed discussion on the multiscale computational approach surrounding atomic, molecular and atomic-informed continuum models. In addition to a detailed theoretical description, this book provides example problems, sample code/script, and a discussion on how theoretical analysis provides insight into optimal experimental design. Furthermore, the book addresses the growth mechanism of these 2D materials, the formation of defects, and different lattice mismatch and interlayer interactions. Sections cover direct band gap, Raman scattering, extraordinary strong light matter interaction, layer dependent photoluminescence, and other physical properties. Explains multiscale computational techniques, from atomic to continuum scale, covering different time and length scales Provides fundamental theoretical insights, example problems, sample code and exercise problems Outlines major characterization and synthesis methods for different types of 2D materials

Synthesis Modelling and Characterization of 2D Materials and their Heterostructures

Synthesis  Modelling and Characterization of 2D Materials and their Heterostructures
Author: Eui-Hyeok Yang,Dibakar Datta,Junjun Ding,Grzegorz Hader
Publsiher: Elsevier
Total Pages: 534
Release: 2020-07-10
ISBN 10: 0128184752
ISBN 13: 9780128184752
Language: EN, FR, DE, ES & NL

Synthesis Modelling and Characterization of 2D Materials and their Heterostructures Book Review:

Synthesis, Modelling and Characterization of 2D Materials and Their Heterostructures provides a detailed discussion on the multiscale computational approach surrounding atomic, molecular and atomic-informed continuum models. In addition to a detailed theoretical description, this book provides example problems, sample code/script, and a discussion on how theoretical analysis provides insight into optimal experimental design. Furthermore, the book addresses the growth mechanism of these 2D materials, the formation of defects, and different lattice mismatch and interlayer interactions. Sections cover direct band gap, Raman scattering, extraordinary strong light matter interaction, layer dependent photoluminescence, and other physical properties. Explains multiscale computational techniques, from atomic to continuum scale, covering different time and length scales Provides fundamental theoretical insights, example problems, sample code and exercise problems Outlines major characterization and synthesis methods for different types of 2D materials

2D Nanoscale Heterostructured Materials

2D Nanoscale Heterostructured Materials
Author: Satyabrata Jit,Santanu Das
Publsiher: Elsevier
Total Pages: 284
Release: 2020-05-09
ISBN 10: 0128176792
ISBN 13: 9780128176795
Language: EN, FR, DE, ES & NL

2D Nanoscale Heterostructured Materials Book Review:

2D Nanoscale Heterostructured Materials: Synthesis, Properties, and Applications assesses the current status and future prospects for 2D materials other than graphene (e.g., BN nanosheets, MoS2, NbSe2, WS2, etc.) that have already been contemplated for both low-end and high-end technological applications. The book offers an overview of the different synthesis techniques for 2D materials and their heterostructures, with a detailed explanation of the many potential future applications. It provides an informed overview and fundamentals properties related to the 2D Transition metal dichalcogenide materials and their heterostructures. The book helps researchers to understand the progress of this field and points the way to future research in this area. Explores synthesis techniques of newly evolved 2D materials and their heterostructures with controlled properties Offers detailed analysis of the fundamental properties (via various experimental process and simulations techniques) of 2D heterostructures materials Discusses the applications of 2D heterostructured materials in various high-performance devices

Fundamentals and Sensing Applications of 2D Materials

Fundamentals and Sensing Applications of 2D Materials
Author: Chandra Sekhar Rout,Dattatray Late,Hywel Morgan
Publsiher: Woodhead Publishing
Total Pages: 512
Release: 2019-06-15
ISBN 10: 0081025785
ISBN 13: 9780081025789
Language: EN, FR, DE, ES & NL

Fundamentals and Sensing Applications of 2D Materials Book Review:

Fundamentals and Sensing Applications of 2D Materials provides a comprehensive understanding of a wide range of 2D materials. Examples of fundamental topics include: defect and vacancy engineering, doping and advantages of 2D materials for sensing, 2D materials and composites for sensing, and 2D materials in biosystems. A wide range of applications are addressed, such as gas sensors based on 2D materials, electrochemical glucose sensors, biosensors (enzymatic and non-enzymatic), and printed, stretchable, wearable and flexible biosensors. Due to their sub-nanometer thickness, 2D materials have a high packing density, thus making them suitable for the fabrication of thin film based sensor devices. Benefiting from their unique physical and chemical properties (e.g. strong mechanical strength, high surface area, unparalleled thermal conductivity, remarkable biocompatibility and ease of functionalization), 2D layered nanomaterials have shown great potential in designing high performance sensor devices. Provides a comprehensive overview of 2D materials systems that are relevant to sensing, including transition metal dichalcogenides, metal oxides, graphene and other 2D materials system Includes information on potential applications, such as flexible sensors, biosensors, optical sensors, electrochemical sensors, and more Discusses graphene in terms of the lessons learned from this material for sensing applications and how these lessons can be applied to other 2D materials

2D Materials and Van der Waals Heterostructures

2D Materials and Van der Waals Heterostructures
Author: Antonio Di Bartolomeo
Publsiher: MDPI
Total Pages: 170
Release: 2020-06-23
ISBN 10: 3039287680
ISBN 13: 9783039287680
Language: EN, FR, DE, ES & NL

2D Materials and Van der Waals Heterostructures Book Review:

The advent of graphene and, more recently, two-dimensional materials has opened new perspectives in electronics, optoelectronics, energy harvesting, and sensing applications. This book, based on a Special Issue published in Nanomaterials – MDPI covers experimental, simulation, and theoretical research on 2D materials and their van der Waals heterojunctions. The emphasis is the physical properties and the applications of 2D materials in state-of-the-art sensors and electronic or optoelectronic devices.

Fundamentals and Supercapacitor Applications of 2D Materials

Fundamentals and Supercapacitor Applications of 2D Materials
Author: Chandra Sekhar Rout,Dattatray J. Late
Publsiher: Elsevier
Total Pages: 414
Release: 2021-05-04
ISBN 10: 0128219947
ISBN 13: 9780128219942
Language: EN, FR, DE, ES & NL

Fundamentals and Supercapacitor Applications of 2D Materials Book Review:

Fundamentals and Applications of Supercapacitor 2D Materials covers different aspects of supercapacitor 2D materials, including their important properties, synthesis, and recent developments in supercapacitor applications of engineered 2D materials. In addition, theoretical investigations and various types of supercapacitors based on 2D materials such as symmetric, asymmetric, flexible, and micro-supercapacitors are covered. This book is a useful resource for research scientists, engineers, and students in the fields of supercapacitors, 2D nanomaterials, and energy storage devices. Due to their sub-nanometer thickness, 2D materials have a high packing density, which is suitable for the fabrication of highly-packed energy supplier/storage devices with enhanced energy and power density. The flexibility of 2D materials, and their good mechanical properties and high packing densities, make them suitable for the development of thin, flexible, and wearable devices. Explores recent developments and looks at the importance of 2D materials in energy storage technologies Presents both the theoretical and DFT related studies Discusses the impact on performance of various operating conditions Includes a brief overview of the applications of supercapacitors in various industries, including aerospace, defense, biomedical, environmental, energy, and automotive

Nanostructured Multifunctional Materials

Nanostructured Multifunctional Materials
Author: Esteban A. Franceschini
Publsiher: CRC Press
Total Pages: 322
Release: 2021-06-04
ISBN 10: 1000378950
ISBN 13: 9781000378955
Language: EN, FR, DE, ES & NL

Nanostructured Multifunctional Materials Book Review:

The development of nanomaterials plays a fundamental role in current and future technology applications, particularly nanomaterials that have multiple functionalities. This book provides a broad overview of the effect of nanostructuring in the multifunctionality of different widely studied nanomaterials. This book is divided into four sections constituting a road map that groups materials sharing certain types of nanostructuring, including nanoporous, nanoparticled, 2D laminar nanomaterials, and computational methods for characterizations of nanostructures. This structured approach in nanomaterials research will serve as a valuable reference material for chemists, (bio)engineers, physicists, nanotechnologists, undergraduates, and professors.

Preparation and Properties of 2D Materials

Preparation and Properties of 2D Materials
Author: Byungjin Cho ,Yonghun Kim
Publsiher: MDPI
Total Pages: 142
Release: 2020-12-10
ISBN 10: 3039362585
ISBN 13: 9783039362585
Language: EN, FR, DE, ES & NL

Preparation and Properties of 2D Materials Book Review:

Since the great success of graphene, atomically thin-layered nanomaterials, called two dimensional (2D) materials, have attracted tremendous attention due to their extraordinary physical properties. Specifically, van der Waals heterostructured architectures based on a few 2D materials, named atomic-scale Lego, have been proposed as unprecedented platforms for the implementation of versatile devices with a completely novel function or extremely high-performance, shifting the research paradigm in materials science and engineering. Thus, diverse 2D materials beyond existing bulk materials have been widely studied for promising electronic, optoelectronic, mechanical, and thermoelectric applications. Especially, this Special Issue included the recent advances in the unique preparation methods such as exfoliation-based synthesis and vacuum-based deposition of diverse 2D materials and also their device applications based on interesting physical properties. Specifically, this Editorial consists of the following two parts: Preparation methods of 2D materials and Properties of 2D materials

Advanced Applications of 2D Nanostructures

Advanced Applications of 2D Nanostructures
Author: Subhash Singh
Publsiher: Springer Nature
Total Pages: 135
Release: 2021
ISBN 10: 9811633223
ISBN 13: 9789811633225
Language: EN, FR, DE, ES & NL

Advanced Applications of 2D Nanostructures Book Review:

Layered 2D Materials and Their Allied Applications

Layered 2D Materials and Their Allied Applications
Author: Inamuddin,Rajender Boddula,Mohd Imran Ahamed,Abdullah M. Asiri
Publsiher: John Wiley & Sons
Total Pages: 400
Release: 2020-04-27
ISBN 10: 111965520X
ISBN 13: 9781119655206
Language: EN, FR, DE, ES & NL

Layered 2D Materials and Their Allied Applications Book Review:

Ever since the discovery of graphene, two-dimensional layered materials (2DLMs) have been the central tool of the materials research community. The reason behind their importance is their superlative and unique electronic, optical, physical, chemical and mechanical properties in layered form rather than in bulk form. The 2DLMs have been applied to electronics, catalysis, energy, environment, and biomedical applications. The following topics are discussed in the book’s fifteen chapters: • The research status of the 2D metal-organic frameworks and the different techniques used to synthesize them. • 2D black phosphorus (BP) and its practical application in various fields. • Reviews the synthesis methods of MXenes and provides a detailed discussion of their structural characterization and physical, electrochemical and optical properties, as well as applications in catalysis, energy storage, environmental management, biomedicine, and gas sensing. • The carbon-based materials and their potential applications via the photocatalytic process using visible light irradiation. • 2D materials like graphene, TMDCs, few-layer phosphorene, MXene in layered form and their heterostructures. • The structure and applications of 2D perovskites. • The physical parameters of pristine layered materials, ZnO, transition metal dichalcogenides, and heterostructures of layered materials are discussed. • The coupling of graphitic carbon nitride with various metal sulfides and oxides to form efficient heterojunction for water purification. • The structural features, synthetic methods, properties, and different applications and properties of 2D zeolites. • The methods for synthesizing 2D hollow nanostructures are featured and their structural aspects and potential in medical and non-medical applications. • The characteristics and structural aspects of 2D layered double hydroxides (LDHs) and the various synthesis methods and role of LDH in non-medical applications as adsorbent, sensor, catalyst, etc. • The synthesis of graphene-based 2D layered materials synthesized by using top-down and bottom-up approaches where the main emphasis is on the hot-filament thermal chemical vapor deposition (HFTCVD) method. • The different properties of 2D h-BN and borophene and the various methods being used for the synthesis of 2D h-BN, along with their growth mechanism and transfer techniques. • The physical properties and current progress of various transition metal dichalcogenides (TMDC) based on photoactive materials for photoelectrochemical (PEC) hydrogen evolution reaction. • The state-of-the-art of 2D layered materials and associated devices, such as electronic, biosensing, optoelectronic, and energy storage applications.

Integration of 2D Materials for Electronics Applications

Integration of 2D Materials for Electronics Applications
Author: Filippo Giannazzo,Samuel Lara Avila,Jens Eriksson,Sushant Sonde
Publsiher: MDPI
Total Pages: 264
Release: 2019-02-13
ISBN 10: 3038976067
ISBN 13: 9783038976066
Language: EN, FR, DE, ES & NL

Integration of 2D Materials for Electronics Applications Book Review:

This book is a printed edition of the Special Issue "Integration of 2D Materials for Electronics Applications" that was published in Crystals

Layered 2D Materials and Their Allied Applications

Layered 2D Materials and Their Allied Applications
Author: Inamuddin,Rajender Boddula,Mohd Imran Ahamed,Abdullah M. Asiri
Publsiher: John Wiley & Sons
Total Pages: 400
Release: 2020-05-12
ISBN 10: 1119655218
ISBN 13: 9781119655213
Language: EN, FR, DE, ES & NL

Layered 2D Materials and Their Allied Applications Book Review:

Ever since the discovery of graphene, two-dimensional layered materials (2DLMs) have been the central tool of the materials research community. The reason behind their importance is their superlative and unique electronic, optical, physical, chemical and mechanical properties in layered form rather than in bulk form. The 2DLMs have been applied to electronics, catalysis, energy, environment, and biomedical applications. The following topics are discussed in the book’s fifteen chapters: • The research status of the 2D metal-organic frameworks and the different techniques used to synthesize them. • 2D black phosphorus (BP) and its practical application in various fields. • Reviews the synthesis methods of MXenes and provides a detailed discussion of their structural characterization and physical, electrochemical and optical properties, as well as applications in catalysis, energy storage, environmental management, biomedicine, and gas sensing. • The carbon-based materials and their potential applications via the photocatalytic process using visible light irradiation. • 2D materials like graphene, TMDCs, few-layer phosphorene, MXene in layered form and their heterostructures. • The structure and applications of 2D perovskites. • The physical parameters of pristine layered materials, ZnO, transition metal dichalcogenides, and heterostructures of layered materials are discussed. • The coupling of graphitic carbon nitride with various metal sulfides and oxides to form efficient heterojunction for water purification. • The structural features, synthetic methods, properties, and different applications and properties of 2D zeolites. • The methods for synthesizing 2D hollow nanostructures are featured and their structural aspects and potential in medical and non-medical applications. • The characteristics and structural aspects of 2D layered double hydroxides (LDHs) and the various synthesis methods and role of LDH in non-medical applications as adsorbent, sensor, catalyst, etc. • The synthesis of graphene-based 2D layered materials synthesized by using top-down and bottom-up approaches where the main emphasis is on the hot-filament thermal chemical vapor deposition (HFTCVD) method. • The different properties of 2D h-BN and borophene and the various methods being used for the synthesis of 2D h-BN, along with their growth mechanism and transfer techniques. • The physical properties and current progress of various transition metal dichalcogenides (TMDC) based on photoactive materials for photoelectrochemical (PEC) hydrogen evolution reaction. • The state-of-the-art of 2D layered materials and associated devices, such as electronic, biosensing, optoelectronic, and energy storage applications.

2D Metal Carbides and Nitrides MXenes

2D Metal Carbides and Nitrides  MXenes
Author: Babak Anasori,Yury Gogotsi
Publsiher: Springer Nature
Total Pages: 534
Release: 2019-10-30
ISBN 10: 3030190269
ISBN 13: 9783030190262
Language: EN, FR, DE, ES & NL

2D Metal Carbides and Nitrides MXenes Book Review:

This book describes the rapidly expanding field of two-dimensional (2D) transition metal carbides and nitrides (MXenes). It covers fundamental knowledge on synthesis, structure, and properties of these new materials, and a description of their processing, scale-up and emerging applications. The ways in which the quickly expanding family of MXenes can outperform other novel nanomaterials in a variety of applications, spanning from energy storage and conversion to electronics; from water science to transportation; and in defense and medical applications, are discussed in detail.

Modeling Characterization and Production of Nanomaterials

Modeling  Characterization  and Production of Nanomaterials
Author: Vinod K. Tewary,Y. Zhang
Publsiher: Woodhead Pub Limited
Total Pages: 554
Release: 2015-03-18
ISBN 10: 9781782422280
ISBN 13: 1782422285
Language: EN, FR, DE, ES & NL

Modeling Characterization and Production of Nanomaterials Book Review:

Nano-scale materials have unique electronic, optical, and chemical properties which make them attractive for a new generation of devices. Part one of Modeling, Characterization, and Production of Nanomaterials: Electronics, Photonics and Energy Applications covers modeling techniques incorporating quantum mechanical effects to simulate nanomaterials and devices, such as multiscale modeling and density functional theory. Part two describes the characterization of nanomaterials using diffraction techniques and Raman spectroscopy. Part three looks at the structure and properties of nanomaterials, including their optical properties and atomic behaviour. Part four explores nanofabrication and nanodevices, including the growth of graphene, GaN-based nanorod heterostructures and colloidal quantum dots for applications in nanophotonics and metallic nanoparticles for catalysis applications. Comprehensive coverage of the close connection between modeling and experimental methods for studying a wide range of nanomaterials and nanostructures Focus on practical applications and industry needs, supported by a solid outlining of theoretical background Draws on the expertise of leading researchers in the field of nanomaterials from around the world

Two Dimensional Transition Metal Dichalcogenides

Two Dimensional Transition Metal Dichalcogenides
Author: Narayanasamy Sabari Arul,Vellalapalayam Devaraj Nithya
Publsiher: Springer
Total Pages: 355
Release: 2019-07-30
ISBN 10: 9811390452
ISBN 13: 9789811390456
Language: EN, FR, DE, ES & NL

Two Dimensional Transition Metal Dichalcogenides Book Review:

This book presents advanced synthesis techniques adopted to fabricate two-dimensional (2D) transition metal dichalcogenides (TMDs) materials with its enhanced properties towards their utilization in various applications such as, energy storage devices, photovoltaics, electrocatalysis, electronic devices, photocatalysts, sensing and biomedical applications. It provides detailed coverage on everything from the synthesis and properties to the applications and future prospects of research in 2D TMD nanomaterials.

Spintronic 2D Materials

Spintronic 2D Materials
Author: Wenqing Liu,Yongbing Xu
Publsiher: Elsevier
Total Pages: 400
Release: 2019-06-15
ISBN 10: 0081021542
ISBN 13: 9780081021545
Language: EN, FR, DE, ES & NL

Spintronic 2D Materials Book Review:

Spintronic 2D Materials: Fundamentals and Applications provides an overview of the fundamental theory of 2D electronic systems that includes a selection of the most intensively investigated 2D materials. The book tells the story of 2D spintronics in a systematic and comprehensive way, providing the growing community of spintronics researchers with a key reference. Part One addresses the fundamental theoretical aspects of 2D materials and spin transport, while Parts Two through Four explore 2D material systems, including graphene, topological insulators, and transition metal dichalcogenides. Each section discusses properties, key issues and recent developments. In addition, the material growth method (from lab to mass production), device fabrication and characterization techniques are included throughout the book. Discusses the fundamentals and applications of spintronics of 2D materials, such as graphene, topological insulators and transition metal dichalcogenides Includes an in-depth look at each materials system, from material growth, device fabrication and characterization techniques Presents the latest solutions on key challenges, such as the spin lifetime of 2D materials, spin-injection efficiency, the potential proximity effects, and much more

2D Materials

2D Materials
Author: Phaedon Avouris,Tony F. Heinz,Tony Low
Publsiher: Cambridge University Press
Total Pages: 523
Release: 2017-06-29
ISBN 10: 1107163714
ISBN 13: 9781107163713
Language: EN, FR, DE, ES & NL

2D Materials Book Review:

Learn about the most recent advances in 2D materials with this comprehensive and accessible text. Providing all the necessary materials science and physics background, leading experts discuss the fundamental properties of a wide range of 2D materials, and their potential applications in electronic, optoelectronic and photonic devices. Several important classes of materials are covered, from more established ones such as graphene, hexagonal boron nitride, and transition metal dichalcogenides, to new and emerging materials such as black phosphorus, silicene, and germanene. Readers will gain an in-depth understanding of the electronic structure and optical, thermal, mechanical, vibrational, spin and plasmonic properties of each material, as well as the different techniques that can be used for their synthesis. Presenting a unified perspective on 2D materials, this is an excellent resource for graduate students, researchers and practitioners working in nanotechnology, nanoelectronics, nanophotonics, condensed matter physics, and chemistry.

Modeling Characterization and Production of Nanomaterials

Modeling  Characterization and Production of Nanomaterials
Author: V Tewary,Y Zhang
Publsiher: Elsevier
Total Pages: 554
Release: 2015-03-17
ISBN 10: 1782422358
ISBN 13: 9781782422358
Language: EN, FR, DE, ES & NL

Modeling Characterization and Production of Nanomaterials Book Review:

Nano-scale materials have unique electronic, optical, and chemical properties which make them attractive for a new generation of devices. Part one of Modeling, Characterization, and Production of Nanomaterials: Electronics, Photonics and Energy Applications covers modeling techniques incorporating quantum mechanical effects to simulate nanomaterials and devices, such as multiscale modeling and density functional theory. Part two describes the characterization of nanomaterials using diffraction techniques and Raman spectroscopy. Part three looks at the structure and properties of nanomaterials, including their optical properties and atomic behaviour. Part four explores nanofabrication and nanodevices, including the growth of graphene, GaN-based nanorod heterostructures and colloidal quantum dots for applications in nanophotonics and metallic nanoparticles for catalysis applications. Comprehensive coverage of the close connection between modeling and experimental methods for studying a wide range of nanomaterials and nanostructures Focus on practical applications and industry needs, supported by a solid outlining of theoretical background Draws on the expertise of leading researchers in the field of nanomaterials from around the world

Low Dimensional and Nanostructured Materials and Devices

Low Dimensional and Nanostructured Materials and Devices
Author: Hilmi Ünlü,Norman J. M. Horing,Jaroslaw Dabrowski
Publsiher: Springer
Total Pages: 674
Release: 2015-12-01
ISBN 10: 3319253409
ISBN 13: 9783319253404
Language: EN, FR, DE, ES & NL

Low Dimensional and Nanostructured Materials and Devices Book Review:

This book focuses on the fundamental phenomena at nanoscale. It covers synthesis, properties, characterization and computer modelling of nanomaterials, nanotechnologies, bionanotechnology, involving nanodevices. Further topics are imaging, measuring, modeling and manipulating of low dimensional matter at nanoscale. The topics covered in the book are of vital importance in a wide range of modern and emerging technologies employed or to be employed in most industries, communication, healthcare, energy, conservation , biology, medical science, food, environment, and education, and consequently have great impact on our society.

Junctionless Field Effect Transistors

Junctionless Field Effect Transistors
Author: Shubham Sahay,Mamidala Jagadesh Kumar
Publsiher: John Wiley & Sons
Total Pages: 496
Release: 2019-01-28
ISBN 10: 1119523524
ISBN 13: 9781119523529
Language: EN, FR, DE, ES & NL

Junctionless Field Effect Transistors Book Review:

A comprehensive one-volume reference on current JLFET methods, techniques, and research Advancements in transistor technology have driven the modern smart-device revolution—many cell phones, watches, home appliances, and numerous other devices of everyday usage now surpass the performance of the room-filling supercomputers of the past. Electronic devices are continuing to become more mobile, powerful, and versatile in this era of internet-of-things (IoT) due in large part to the scaling of metal-oxide semiconductor field-effect transistors (MOSFETs). Incessant scaling of the conventional MOSFETs to cater to consumer needs without incurring performance degradation requires costly and complex fabrication process owing to the presence of metallurgical junctions. Unlike conventional MOSFETs, junctionless field-effect transistors (JLFETs) contain no metallurgical junctions, so they are simpler to process and less costly to manufacture.JLFETs utilize a gated semiconductor film to control its resistance and the current flowing through it. Junctionless Field-Effect Transistors: Design, Modeling, and Simulation is an inclusive, one-stop referenceon the study and research on JLFETs This timely book covers the fundamental physics underlying JLFET operation, emerging architectures, modeling and simulation methods, comparative analyses of JLFET performance metrics, and several other interesting facts related to JLFETs. A calibrated simulation framework, including guidance on SentaurusTCAD software, enables researchers to investigate JLFETs, develop new architectures, and improve performance. This valuable resource: Addresses the design and architecture challenges faced by JLFET as a replacement for MOSFET Examines various approaches for analytical and compact modeling of JLFETs in circuit design and simulation Explains how to use Technology Computer-Aided Design software (TCAD) to produce numerical simulations of JLFETs Suggests research directions and potential applications of JLFETs Junctionless Field-Effect Transistors: Design, Modeling, and Simulation is an essential resource for CMOS device design researchers and advanced students in the field of physics and semiconductor devices.