Spintronic 2D Materials

Spintronic 2D Materials
Author: Wenqing Liu,Yongbing Xu
Publsiher: Elsevier
Total Pages: 400
Release: 2019-06-15
ISBN 10: 0081021542
ISBN 13: 9780081021545
Language: EN, FR, DE, ES & NL

Spintronic 2D Materials Book Review:

Spintronic 2D Materials: Fundamentals and Applications provides an overview of the fundamental theory of 2D electronic systems that includes a selection of the most intensively investigated 2D materials. The book tells the story of 2D spintronics in a systematic and comprehensive way, providing the growing community of spintronics researchers with a key reference. Part One addresses the fundamental theoretical aspects of 2D materials and spin transport, while Parts Two through Four explore 2D material systems, including graphene, topological insulators, and transition metal dichalcogenides. Each section discusses properties, key issues and recent developments. In addition, the material growth method (from lab to mass production), device fabrication and characterization techniques are included throughout the book. Discusses the fundamentals and applications of spintronics of 2D materials, such as graphene, topological insulators and transition metal dichalcogenides Includes an in-depth look at each materials system, from material growth, device fabrication and characterization techniques Presents the latest solutions on key challenges, such as the spin lifetime of 2D materials, spin-injection efficiency, the potential proximity effects, and much more

2D Materials

2D Materials
Author: Phaedon Avouris,Tony F. Heinz,Tony Low
Publsiher: Cambridge University Press
Total Pages: 523
Release: 2017-06-29
ISBN 10: 1107163714
ISBN 13: 9781107163713
Language: EN, FR, DE, ES & NL

2D Materials Book Review:

Learn about the most recent advances in 2D materials with this comprehensive and accessible text. Providing all the necessary materials science and physics background, leading experts discuss the fundamental properties of a wide range of 2D materials, and their potential applications in electronic, optoelectronic and photonic devices. Several important classes of materials are covered, from more established ones such as graphene, hexagonal boron nitride, and transition metal dichalcogenides, to new and emerging materials such as black phosphorus, silicene, and germanene. Readers will gain an in-depth understanding of the electronic structure and optical, thermal, mechanical, vibrational, spin and plasmonic properties of each material, as well as the different techniques that can be used for their synthesis. Presenting a unified perspective on 2D materials, this is an excellent resource for graduate students, researchers and practitioners working in nanotechnology, nanoelectronics, nanophotonics, condensed matter physics, and chemistry.

Handbook of Spin Transport and Magnetism

Handbook of Spin Transport and Magnetism
Author: Evgeny Y. Tsymbal,Igor Zutic
Publsiher: CRC Press
Total Pages: 808
Release: 2016-04-19
ISBN 10: 1439803781
ISBN 13: 9781439803783
Language: EN, FR, DE, ES & NL

Handbook of Spin Transport and Magnetism Book Review:

In the past several decades, the research on spin transport and magnetism has led to remarkable scientific and technological breakthroughs, including Albert Fert and Peter Grunberg's Nobel Prize-winning discovery of giant magnetoresistance (GMR) in magnetic metallic multilayers. Handbook of Spin Transport and Magnetism provides a comprehensive, bal

Graphene in Spintronics

Graphene in Spintronics
Author: Junichiro Inoue,Ai Yamakage,Syuta Honda
Publsiher: CRC Press
Total Pages: 306
Release: 2016-05-25
ISBN 10: 9814669571
ISBN 13: 9789814669573
Language: EN, FR, DE, ES & NL

Graphene in Spintronics Book Review:

The discovery and fabrication of new materials have opened the gate for new research fields in science and technology. The novel method of fabricating graphene, a purely 2D carbon lattice, and the discovery of the phenomenon of giant magnetoresistance (GMR) in magnetic multilayers are not exceptions. The latter has brought about the creation of the new technological field of spintronics, which utilizes both spin and charge degrees of freedom of electrons. As for the former, many applications have been proposed; however, no practical devices have yet been developed in the field of spintronics. The aim of this book is to provide possible hints to overcome the difficulties in graphene applications in the field of spintronics by comparing the physical properties of graphene and magnetoresistive (MR) phenomena in spintronics. The book will be useful for advanced undergraduate students and graduate students of physics, chemistry, and materials science and young researchers in nanotechnology and the field of spintronics.

Noise in Spintronics

Noise in Spintronics
Author: Farkhad Aliev,Juan Pedro Cascales
Publsiher: CRC Press
Total Pages: 338
Release: 2018-09-04
ISBN 10: 1351617389
ISBN 13: 9781351617383
Language: EN, FR, DE, ES & NL

Noise in Spintronics Book Review:

This book covers the main physical mechanisms and the different contributions (1/f noise, shot noise, etc.) behind electronic fluctuations in various spintronic devices. It presents the first comprehensive summary of fundamental noise mechanisms in both electronic and spintronic devices and is therefore unique in that aspect. The pedagogic introduction to noise is complemented by a detailed description of how one could set up a noise measurement experiment in the lab. A further extensive description of the recent progress in understanding and controlling noise in spintronics, including the boom in 2D devices, molecular spintronics, and field sensing, is accompanied by both numerous bibliography references and tens of case studies on the fundamental aspects of noise and on some important qualitative steps to understand noise in spintronics. Moreover, a detailed discussion of unsolved problems and outlook make it an essential textbook for scientists and students desiring to exploit the information hidden in noise in both spintronics and conventional electronics.

Integration of 2D Materials for Electronics Applications

Integration of 2D Materials for Electronics Applications
Author: Filippo Giannazzo,Samuel Lara Avila,Jens Eriksson,Sushant Sonde
Publsiher: MDPI
Total Pages: 264
Release: 2019-02-13
ISBN 10: 3038976067
ISBN 13: 9783038976066
Language: EN, FR, DE, ES & NL

Integration of 2D Materials for Electronics Applications Book Review:

This book is a printed edition of the Special Issue "Integration of 2D Materials for Electronics Applications" that was published in Crystals

Spin Electronics

Spin Electronics
Author: David D. Awschalom,Robert A. Buhrman,James M. Daughton,Stephan von Molnár,Michael L. Roukes
Publsiher: Springer Science & Business Media
Total Pages: 198
Release: 2013-06-29
ISBN 10: 9401705321
ISBN 13: 9789401705325
Language: EN, FR, DE, ES & NL

Spin Electronics Book Review:

The history of scientific research and technological development is replete with examples of breakthroughs that have advanced the frontiers of knowledge, but seldom does it record events that constitute paradigm shifts in broad areas of intellectual pursuit. One notable exception, however, is that of spin electronics (also called spintronics, magnetoelectronics or magnetronics), wherein information is carried by electron spin in addition to, or in place of, electron charge. It is now well established in scientific and engineering communities that Moore's Law, having been an excellent predictor of integrated circuit density and computer performance since the 1970s, now faces great challenges as the scale of electronic devices has been reduced to the level where quantum effects become significant factors in device operation. Electron spin is one such effect that offers the opportunity to continue the gains predicted by Moore's Law, by taking advantage of the confluence of magnetics and semiconductor electronics in the newly emerging discipline of spin electronics. From a fundamental viewpoine, spin-polarization transport in a material occurs when there is an imbalance of spin populations at the Fermi energy. In ferromagnetic metals this imbalance results from a shift in the energy states available to spin-up and spin-down electrons. In practical applications, a ferromagnetic metal may be used as a source of spin-polarized electronics to be injected into a semiconductor, a superconductor or a normal metal, or to tunnel through an insulating barrier.

2D Materials for Photonic and Optoelectronic Applications

2D Materials for Photonic and Optoelectronic Applications
Author: Qiaoliang Bao,Hui Ying Hoh
Publsiher: Woodhead Publishing
Total Pages: 336
Release: 2019-10-19
ISBN 10: 0128154357
ISBN 13: 9780128154359
Language: EN, FR, DE, ES & NL

2D Materials for Photonic and Optoelectronic Applications Book Review:

2D Materials for Photonic and Optoelectronic Applications introduces readers to two-dimensional materials and their properties (optical, electronic, spin and plasmonic), various methods of synthesis, and possible applications, with a strong focus on novel findings and technological challenges. The two-dimensional materials reviewed include hexagonal boron nitride, silicene, germanene, topological insulators, transition metal dichalcogenides, black phosphorous and other novel materials. This book will be ideal for students and researchers in materials science, photonics, electronics, nanotechnology and condensed matter physics and chemistry, providing background for both junior investigators and timely reviews for seasoned researchers. Provides an in-depth look at boron nitride, silicene, germanene, topological insulators, transition metal dichalcogenides, and more Reviews key applications for photonics and optoelectronics, including photodetectors, optical signal processing, light-emitting diodes and photovoltaics Addresses key technological challenges for the realization of optoelectronic applications and comments on future solutions

Two dimensional Materials

Two dimensional Materials
Author: Pramoda Kumar Nayak
Publsiher: BoD – Books on Demand
Total Pages: 280
Release: 2016-08-31
ISBN 10: 9535125540
ISBN 13: 9789535125549
Language: EN, FR, DE, ES & NL

Two dimensional Materials Book Review:

There are only a few discoveries and new technologies in materials science that have the potential to dramatically alter and revolutionize our material world. Discovery of two-dimensional (2D) materials, the thinnest form of materials to ever occur in nature, is one of them. After isolation of graphene from graphite in 2004, a whole other class of atomically thin materials, dominated by surface effects and showing completely unexpected and extraordinary properties, has been created. This book provides a comprehensive view and state-of-the-art knowledge about 2D materials such as graphene, hexagonal boron nitride (h-BN), transition metal dichalcogenides (TMD) and so on. It consists of 11 chapters contributed by a team of experts in this exciting field and provides latest synthesis techniques of 2D materials, characterization and their potential applications in energy conservation, electronics, optoelectronics and biotechnology.

Two Dimensional Carbon

Two Dimensional Carbon
Author: Wu Yihong,Shen Zexiang,Yu Ting
Publsiher: CRC Press
Total Pages: 346
Release: 2014-04-09
ISBN 10: 9814411949
ISBN 13: 9789814411943
Language: EN, FR, DE, ES & NL

Two Dimensional Carbon Book Review:

After a brief introduction to the fundamental properties of graphene, this book focuses on synthesis, characterization and application of various types of two-dimensional (2D) nanocarbons ranging from single/few layer graphene to carbon nanowalls and graphene oxides. Three major synthesis techniques are covered: epitaxial growth of graphene on SiC, chemical synthesis of graphene on metal, and chemical vapor deposition of vertically aligned carbon nanosheets or nanowalls. One chapter is dedicated to characterization of 2D nanocarbon using Raman spectroscopy. It provides extensive coverage for applications of 2D carbon in energy storage including supercapacitor, lithium ion battery and fuel cells.

Recent Advances in Novel Materials for Future Spintronics

Recent Advances in Novel Materials for Future Spintronics
Author: Xiaotian Wang,Hong Chen,Rabah Khenata
Publsiher: MDPI
Total Pages: 152
Release: 2019-05-27
ISBN 10: 3038979767
ISBN 13: 9783038979760
Language: EN, FR, DE, ES & NL

Recent Advances in Novel Materials for Future Spintronics Book Review:

As we all know, electrons carry both charge and spin. The processing of information in conventional electronic devices is based only on the charge of electrons. Spin electronics, or spintronics, uses the spin of electrons, as well as their charge, to process information. Metals, semiconductors, and insulators are the basic materials that constitute the components of electronic devices, and these types of materials have been transforming all aspects of society for over a century. In contrast, magnetic metals, half-metals (including zero-gap half-metals), magnetic semiconductors (including spin-gapless semiconductors), dilute magnetic semiconductors, and magnetic insulators are the materials that will form the basis for spintronic devices. This book aims to collect a range of papers on novel materials that have intriguing physical properties and numerous potential practical applications in spintronics.

Spintronics Handbook Second Edition Spin Transport and Magnetism

Spintronics Handbook  Second Edition  Spin Transport and Magnetism
Author: Evgeny Y. Tsymbal,Igor Žutić
Publsiher: CRC Press
Total Pages: 646
Release: 2019-06-26
ISBN 10: 0429805268
ISBN 13: 9780429805264
Language: EN, FR, DE, ES & NL

Spintronics Handbook Second Edition Spin Transport and Magnetism Book Review:

Spintronics Handbook, Second Edition offers an update on the single most comprehensive survey of the two intertwined fields of spintronics and magnetism, covering the diverse array of materials and structures, including silicon, organic semiconductors, carbon nanotubes, graphene, and engineered nanostructures. It focuses on seminal pioneering work, together with the latest in cutting-edge advances, notably extended discussion of two-dimensional materials beyond graphene, topological insulators, skyrmions, and molecular spintronics. The main sections cover physical phenomena, spin-dependent tunneling, control of spin and magnetism in semiconductors, and spin-based applications. Features: Presents the most comprehensive reference text for the overlapping fields of spintronics (spin transport) and magnetism. Covers the full spectrum of materials and structures, from silicon and organic semiconductors to carbon nanotubes, graphene, and engineered nanostructures. Extends coverage of two-dimensional materials beyond graphene, including molybdenum disulfide and study of their spin relaxation mechanisms Includes new dedicated chapters on cutting-edge topics such as spin-orbit torques, topological insulators, half metals, complex oxide materials and skyrmions. Discusses important emerging areas of spintronics with superconductors, spin-wave spintronics, benchmarking of spintronics devices, and theory and experimental approaches to molecular spintronics. Evgeny Tsymbal's research is focused on computational materials science aiming at the understanding of fundamental properties of advanced ferromagnetic and ferroelectric nanostructures and materials relevant to nanoelectronics and spintronics. He is a George Holmes University Distinguished Professor at the Department of Physics and Astronomy of the University of Nebraska-Lincoln (UNL), Director of the UNL’s Materials Research Science and Engineering Center (MRSEC), and Director of the multi-institutional Center for NanoFerroic Devices (CNFD). Igor Žutić received his Ph.D. in theoretical physics at the University of Minnesota. His work spans a range of topics from high-temperature superconductors and ferromagnetism that can get stronger as the temperature is increased, to prediction of various spin-based devices. He is a recipient of 2006 National Science Foundation CAREER Award, 2005 National Research Council/American Society for Engineering Education Postdoctoral Research Award, and the National Research Council Fellowship (2003-2005). His research is supported by the National Science Foundation, the Office of Naval Research, the Department of Energy, and the Airforce Office of Scientific Research.

Graphene and Related Nanomaterials

Graphene and Related Nanomaterials
Author: Paolo Bondavalli
Publsiher: Elsevier
Total Pages: 192
Release: 2017-10-26
ISBN 10: 0323481027
ISBN 13: 9780323481021
Language: EN, FR, DE, ES & NL

Graphene and Related Nanomaterials Book Review:

Graphene and Related Nanomaterials: Properties and Applications outlines the physics and the applications of graphene-related materials, including graphene, graphene oxide and carbon nanotubes. The first chapter introduces the physics of graphene and related nanomaterials. The following sections deal with different applications spanning from gas sensors to non-volatile memories and supercapacitors. The book also covers spintronics for graphene. In each chapter, specific applications are explained in a detailed way. This book will appeal to materials scientists and engineers looking to understand more about the nature of graphene and how it is currently being used. Explains how particular physical properties of graphene make it suitable for specific applications Explores current applications in sensing and energy Assesses the challenges of using carbon nanomaterials in engineering and evaluates future opportunities Appeals to materials scientists and engineers looking to understand more about the nature of graphene and how it is currently being used

Organic Spintronics

Organic Spintronics
Author: Zeev Valy Vardeny
Publsiher: CRC Press
Total Pages: 352
Release: 2010-04-09
ISBN 10: 9781439806579
ISBN 13: 1439806578
Language: EN, FR, DE, ES & NL

Organic Spintronics Book Review:

Present worldwide funding in organic electronics is poised to stimulate major research and development efforts in organic materials research for lighting, photovoltaic, and other optoelectronic applications. The field of organic spintronics, in particular, has flourished in the area of organic magneto-transport. Reflecting the main avenues of substantial advances in this arena, Organic Spintronics is an up-to-date summary of the experimental and theoretical aspects of the field. With contributions by a panel of international experts on the cutting edge of research, this volume explores: Spin injection and manipulation in organic spin valves The magnetic field effect in organic light-emitting diodes (OLEDs) The spin transport effect in relation to spin manipulation Organic magnets as spin injection electrodes in organic spintronics devices The coherent control of spins in organic devices using the technique of electronically detected magnetic resonance The possibility of using organic spin valves as sensors Balancing practical experimentation with analytical constructs, the book covers both the theoretical aspects of spin injection, transport, and detection in organic spin valves as well as the underlying mechanism of the magnetoresistance and magneto-electroluminescence in OLEDs. The first book of its kind on this specialized area, this volume is destined to provide researchers and students with the impetus to develop new channels of inquiry in an area that has almost limitless potential.

2D and Quasi 2D Composite and Nanocomposite Materials

2D and Quasi 2D Composite and Nanocomposite Materials
Author: Ross Mcphedran,Simon Gluzman,Vladimir Mityushev,Natalia Rylko
Publsiher: Elsevier
Total Pages: 316
Release: 2020-06-05
ISBN 10: 0128188200
ISBN 13: 9780128188200
Language: EN, FR, DE, ES & NL

2D and Quasi 2D Composite and Nanocomposite Materials Book Review:

2D and Quasi-2D Composite and Nanocomposite Materials: Theory, Properties and Photonic Applications covers the theory, characterization and computational modeling of 2D composite materials and shows how they are used for the creation of materials for 3D structures The book covers three major themes: Properties of 2D and quasi-2D composites are discussed in the context of homogenization theory. Homogenization results are discussed for spatiotemporal material composites assembled from materials which are distributed on a micro-scale in space and in time. New types of transport phenomena and localization in random media are addressed, with particular attention to the non-reciprocity of transport coefficients. Plasmonics and magneto-optics are also of particular interest. Magneto-transport and sub-wavelength resolution in electromagnetic and acoustic imaging are further considered. This book is an important resource for materials scientists and engineers working on nanomaterials, photonic composites, and materials theory, modeling and simulations. Outlines major modelling techniques of 2D nanocomposites for photonic applications Explores how the properties of 2D nanocomposites make them suitable for use for building 3D structures Assesses the challenges of using 2D nanocomposites for designing new devices on a mass scale

Spin and Charge Transport in 2D Materials and Magnetic Insulator metal Heterostructures

Spin and Charge Transport in 2D Materials and Magnetic Insulator metal Heterostructures
Author: Walid Amamou
Publsiher: Unknown
Total Pages: 137
Release: 2017
ISBN 10: 9781369833454
ISBN 13: 1369833458
Language: EN, FR, DE, ES & NL

Spin and Charge Transport in 2D Materials and Magnetic Insulator metal Heterostructures Book Review:

Furthermore, we examine spin manipulation in a nonmagnetic Pt using an internal magnetic exchange field produced by the adjacent magnetic insulator CoFe2O4 grown by MBE. Here, we report the observation of a strong magnetic proximity effect of Pt deposited on top of a perpendicular magnetic anisotropy (PMA) inverse spinel material Cobalt Ferrite (CFO, CoFe 2O4). The CFO was grown by MBE and its magnetization was characterized by Vibrating Sample Magnetometry (VSM) demonstrating the strong out of plane magnetic anisotropy of this material. The anomalous Hall measurement on a Pt/CFO Hall bar exhibits a strong non-linear background around the saturation of the out of plane CFO magnetization. After subtraction of the Ordinary Hall Effect (OHE), we extract a strongly hysteretic anomalous Hall voltage that indicates that Pt acquired the magnetization properties of the CFO and has become ferromagnetic due to the proximity effects.

Computational Modeling of Spintronic Materials

Computational Modeling of Spintronic Materials
Author: Xiaotian Wang,Gokhan Surucu,Zhenxiang Cheng
Publsiher: Frontiers Media SA
Total Pages: 329
Release: 2021-03-03
ISBN 10: 2889664864
ISBN 13: 9782889664863
Language: EN, FR, DE, ES & NL

Computational Modeling of Spintronic Materials Book Review:

Nanoscience Volume 6

Nanoscience  Volume 6
Author: Neerish Revaprasadu
Publsiher: Royal Society of Chemistry
Total Pages: 173
Release: 2020-05-21
ISBN 10: 1788016939
ISBN 13: 9781788016933
Language: EN, FR, DE, ES & NL

Nanoscience Volume 6 Book Review:

The field of nanoscience continues to grow and, with such a vast landscape of material, careful distillation of the most important discoveries will help researchers find the key information they require. Nanoscience provides a critical and comprehensive assessment of the most recent research and opinion from across the globe. Topics covered in this volume include metal halide perovskite nanomaterials, properties and applications, nanoparticles and nanocomposites for new permanent magnets and graphene-based materials for energy conversion applications. Anyone practising in any nano-allied field, or wishing to enter the nano-world will benefit from this resource, presenting the current thought and applications of nanoscience.

Functional Materials and Electronics

Functional Materials and Electronics
Author: Jiabao Yi,Sean Li
Publsiher: CRC Press
Total Pages: 350
Release: 2018-05-11
ISBN 10: 1351682768
ISBN 13: 9781351682763
Language: EN, FR, DE, ES & NL

Functional Materials and Electronics Book Review:

This informative book focuses on newly developed functional materials and their applications for electronic and spintronic devices. Electronic devices have become a part of our daily modern life, involving mobile phones, data storage, computers, and satellites, and there is relentless growth in microelectronics. This volume covers the topics of oxide materials for electronics devices, new materials, and new properties, especially in newly developed research areas, such as oxide magnetic semiconductors and two-dimensional electron gas. Key features: Emphasizes functional materials for electronic devices, including two-dimensional materials, two-dimensional electron gas, multiferroic materials, memory materials, sensor materials, and spintronic materials. Describes the basics as well as new developments of these functional materials and devices.

Handbook of Spintronics

Handbook of Spintronics
Author: Yongbing Xu,David D. Awschalom,Junsaku Nitta
Publsiher: Springer
Total Pages: 1400
Release: 2016-03-11
ISBN 10: 9789400768932
ISBN 13: 9400768931
Language: EN, FR, DE, ES & NL

Handbook of Spintronics Book Review:

Over two volumes and 1500 pages, the Handbook of Spintronics will cover all aspects of spintronics science and technology, including fundamental physics, materials properties and processing, established and emerging device technology and applications. Comprising 60 chapters from a large international team of leading researchers across academia and industry, the Handbook provides readers with an up-to-date and comprehensive review of this dynamic field of research. The opening chapters focus on the fundamental physical principles of spintronics in metals and semiconductors, including an introduction to spin quantum computing. Materials systems are then considered, with sections on metallic thin films and multilayers, magnetic tunnelling structures, hybrids, magnetic semiconductors and molecular spintronic materials. A separate section reviews the various characterisation methods appropriate to spintronics materials, including STM, spin-polarised photoemission, x-ray diffraction techniques and spin-polarised SEM. The third part of the Handbook contains chapters on the state of the art in device technology and applications, including spin valves, GMR and MTJ devices, MRAM technology, spin transistors and spin logic devices, spin torque devices, spin pumping and spin dynamics and other topics such as spin caloritronics. Each chapter considers the challenges faced by researchers in that area and contains some indications of the direction that future work in the field is likely to take. This reference work will be an essential and long-standing resource for the spintronics community.