# Practical Machine Learning for Data Analysis Using Python

Download and Read online **Practical Machine Learning for Data Analysis Using Python**, ebooks in PDF, epub, Tuebl Mobi, Kindle Book. Get Free **Practical Machine Learning For Data Analysis Using Python** Textbook and unlimited access to our library by created an account. Fast Download speed and ads Free!

## Practical Machine Learning for Data Analysis Using Python

Author | : Abdulhamit Subasi |

Publsiher | : Academic Press |

Total Pages | : 534 |

Release | : 2020-06-05 |

ISBN 10 | : 0128213809 |

ISBN 13 | : 9780128213803 |

Language | : EN, FR, DE, ES & NL |

**Practical Machine Learning for Data Analysis Using Python Book Review:**

Practical Machine Learning for Data Analysis Using Python is a problem solver’s guide for creating real-world intelligent systems. It provides a comprehensive approach with concepts, practices, hands-on examples, and sample code. The book teaches readers the vital skills required to understand and solve different problems with machine learning. It teaches machine learning techniques necessary to become a successful practitioner, through the presentation of real-world case studies in Python machine learning ecosystems. The book also focuses on building a foundation of machine learning knowledge to solve different real-world case studies across various fields, including biomedical signal analysis, healthcare, security, economics, and finance. Moreover, it covers a wide range of machine learning models, including regression, classification, and forecasting. The goal of the book is to help a broad range of readers, including IT professionals, analysts, developers, data scientists, engineers, and graduate students, to solve their own real-world problems. Offers a comprehensive overview of the application of machine learning tools in data analysis across a wide range of subject areas Teaches readers how to apply machine learning techniques to biomedical signals, financial data, and healthcare data Explores important classification and regression algorithms as well as other machine learning techniques Explains how to use Python to handle data extraction, manipulation, and exploration techniques, as well as how to visualize data spread across multiple dimensions and extract useful features

## Practical Machine Learning with Python

Author | : Dipanjan Sarkar,Raghav Bali,Tushar Sharma |

Publsiher | : Apress |

Total Pages | : 530 |

Release | : 2017-12-20 |

ISBN 10 | : 1484232070 |

ISBN 13 | : 9781484232071 |

Language | : EN, FR, DE, ES & NL |

**Practical Machine Learning with Python Book Review:**

Master the essential skills needed to recognize and solve complex problems with machine learning and deep learning. Using real-world examples that leverage the popular Python machine learning ecosystem, this book is your perfect companion for learning the art and science of machine learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute machine learning systems and projects successfully. Practical Machine Learning with Python follows a structured and comprehensive three-tiered approach packed with hands-on examples and code. Part 1 focuses on understanding machine learning concepts and tools. This includes machine learning basics with a broad overview of algorithms, techniques, concepts and applications, followed by a tour of the entire Python machine learning ecosystem. Brief guides for useful machine learning tools, libraries and frameworks are also covered. Part 2 details standard machine learning pipelines, with an emphasis on data processing analysis, feature engineering, and modeling. You will learn how to process, wrangle, summarize and visualize data in its various forms. Feature engineering and selection methodologies will be covered in detail with real-world datasets followed by model building, tuning, interpretation and deployment. Part 3 explores multiple real-world case studies spanning diverse domains and industries like retail, transportation, movies, music, marketing, computer vision and finance. For each case study, you will learn the application of various machine learning techniques and methods. The hands-on examples will help you become familiar with state-of-the-art machine learning tools and techniques and understand what algorithms are best suited for any problem. Practical Machine Learning with Python will empower you to start solving your own problems with machine learning today! What You'll Learn Execute end-to-end machine learning projects and systems Implement hands-on examples with industry standard, open source, robust machine learning tools and frameworks Review case studies depicting applications of machine learning and deep learning on diverse domains and industries Apply a wide range of machine learning models including regression, classification, and clustering. Understand and apply the latest models and methodologies from deep learning including CNNs, RNNs, LSTMs and transfer learning. Who This Book Is For IT professionals, analysts, developers, data scientists, engineers, graduate students

## Practical Machine Learning with H2O

Author | : Darren Cook |

Publsiher | : "O'Reilly Media, Inc." |

Total Pages | : 300 |

Release | : 2016-12-05 |

ISBN 10 | : 149196457X |

ISBN 13 | : 9781491964576 |

Language | : EN, FR, DE, ES & NL |

**Practical Machine Learning with H2O Book Review:**

Learn how to construct machine learning and data analysis scalable for big data using H2O software, using sample data sets and several machine-learning techniques including deep learning, random forests, unsupervised learning and ensemble learning.

## Mastering Machine Learning with Python in Six Steps

Author | : Manohar Swamynathan |

Publsiher | : Apress |

Total Pages | : 457 |

Release | : 2019-10-01 |

ISBN 10 | : 148424947X |

ISBN 13 | : 9781484249475 |

Language | : EN, FR, DE, ES & NL |

**Mastering Machine Learning with Python in Six Steps Book Review:**

Explore fundamental to advanced Python 3 topics in six steps, all designed to make you a worthy practitioner. This updated version’s approach is based on the “six degrees of separation” theory, which states that everyone and everything is a maximum of six steps away and presents each topic in two parts: theoretical concepts and practical implementation using suitable Python 3 packages. You’ll start with the fundamentals of Python 3 programming language, machine learning history, evolution, and the system development frameworks. Key data mining/analysis concepts, such as exploratory analysis, feature dimension reduction, regressions, time series forecasting and their efficient implementation in Scikit-learn are covered as well. You’ll also learn commonly used model diagnostic and tuning techniques. These include optimal probability cutoff point for class creation, variance, bias, bagging, boosting, ensemble voting, grid search, random search, Bayesian optimization, and the noise reduction technique for IoT data. Finally, you’ll review advanced text mining techniques, recommender systems, neural networks, deep learning, reinforcement learning techniques and their implementation. All the code presented in the book will be available in the form of iPython notebooks to enable you to try out these examples and extend them to your advantage. What You'll Learn Understand machine learning development and frameworks Assess model diagnosis and tuning in machine learning Examine text mining, natuarl language processing (NLP), and recommender systems Review reinforcement learning and CNN Who This Book Is For Python developers, data engineers, and machine learning engineers looking to expand their knowledge or career into machine learning area.

## Practical Machine Learning

Author | : Sunila Gollapudi |

Publsiher | : Packt Publishing Ltd |

Total Pages | : 468 |

Release | : 2016-01-30 |

ISBN 10 | : 1784394017 |

ISBN 13 | : 9781784394011 |

Language | : EN, FR, DE, ES & NL |

**Practical Machine Learning Book Review:**

Tackle the real-world complexities of modern machine learning with innovative, cutting-edge, techniques About This Book Fully-coded working examples using a wide range of machine learning libraries and tools, including Python, R, Julia, and Spark Comprehensive practical solutions taking you into the future of machine learning Go a step further and integrate your machine learning projects with Hadoop Who This Book Is For This book has been created for data scientists who want to see machine learning in action and explore its real-world application. With guidance on everything from the fundamentals of machine learning and predictive analytics to the latest innovations set to lead the big data revolution into the future, this is an unmissable resource for anyone dedicated to tackling current big data challenges. Knowledge of programming (Python and R) and mathematics is advisable if you want to get started immediately. What You Will Learn Implement a wide range of algorithms and techniques for tackling complex data Get to grips with some of the most powerful languages in data science, including R, Python, and Julia Harness the capabilities of Spark and Hadoop to manage and process data successfully Apply the appropriate machine learning technique to address real-world problems Get acquainted with Deep learning and find out how neural networks are being used at the cutting-edge of machine learning Explore the future of machine learning and dive deeper into polyglot persistence, semantic data, and more In Detail Finding meaning in increasingly larger and more complex datasets is a growing demand of the modern world. Machine learning and predictive analytics have become the most important approaches to uncover data gold mines. Machine learning uses complex algorithms to make improved predictions of outcomes based on historical patterns and the behaviour of data sets. Machine learning can deliver dynamic insights into trends, patterns, and relationships within data, immensely valuable to business growth and development. This book explores an extensive range of machine learning techniques uncovering hidden tricks and tips for several types of data using practical and real-world examples. While machine learning can be highly theoretical, this book offers a refreshing hands-on approach without losing sight of the underlying principles. Inside, a full exploration of the various algorithms gives you high-quality guidance so you can begin to see just how effective machine learning is at tackling contemporary challenges of big data. This is the only book you need to implement a whole suite of open source tools, frameworks, and languages in machine learning. We will cover the leading data science languages, Python and R, and the underrated but powerful Julia, as well as a range of other big data platforms including Spark, Hadoop, and Mahout. Practical Machine Learning is an essential resource for the modern data scientists who want to get to grips with its real-world application. With this book, you will not only learn the fundamentals of machine learning but dive deep into the complexities of real world data before moving on to using Hadoop and its wider ecosystem of tools to process and manage your structured and unstructured data. You will explore different machine learning techniques for both supervised and unsupervised learning; from decision trees to Naive Bayes classifiers and linear and clustering methods, you will learn strategies for a truly advanced approach to the statistical analysis of data. The book also explores the cutting-edge advancements in machine learning, with worked examples and guidance on deep learning and reinforcement learning, providing you with practical demonstrations and samples that help take the theory–and mystery–out of even the most advanced machine learning methodologies. Style and approach A practical data science tutorial designed to give you an insight into the practical application of machine learning, this book takes you through complex concepts and tasks in an accessible way. Featuring information on a wide range of data science techniques, Practical Machine Learning is a comprehensive data science resource.

## Practical Machine Learning for Streaming Data with Python

Author | : Sayan Putatunda |

Publsiher | : Apress |

Total Pages | : 118 |

Release | : 2021-04-09 |

ISBN 10 | : 9781484268667 |

ISBN 13 | : 1484268660 |

Language | : EN, FR, DE, ES & NL |

**Practical Machine Learning for Streaming Data with Python Book Review:**

Design, develop, and validate machine learning models with streaming data using the Scikit-Multiflow framework. This book is a quick start guide for data scientists and machine learning engineers looking to implement machine learning models for streaming data with Python to generate real-time insights. You'll start with an introduction to streaming data, the various challenges associated with it, some of its real-world business applications, and various windowing techniques. You'll then examine incremental and online learning algorithms, and the concept of model evaluation with streaming data and get introduced to the Scikit-Multiflow framework in Python. This is followed by a review of the various change detection/concept drift detection algorithms and the implementation of various datasets using Scikit-Multiflow. Introduction to the various supervised and unsupervised algorithms for streaming data, and their implementation on various datasets using Python are also covered. The book concludes by briefly covering other open-source tools available for streaming data such as Spark, MOA (Massive Online Analysis), Kafka, and more. What You'll Learn Understand machine learning with streaming data concepts Review incremental and online learning Develop models for detecting concept drift Explore techniques for classification, regression, and ensemble learning in streaming data contexts Apply best practices for debugging and validating machine learning models in streaming data context Get introduced to other open-source frameworks for handling streaming data. Who This Book Is For Machine learning engineers and data science professionals

## Practical Machine Learning and Image Processing

Author | : Himanshu Singh |

Publsiher | : Apress |

Total Pages | : 169 |

Release | : 2019-02-26 |

ISBN 10 | : 1484241495 |

ISBN 13 | : 9781484241493 |

Language | : EN, FR, DE, ES & NL |

**Practical Machine Learning and Image Processing Book Review:**

Gain insights into image-processing methodologies and algorithms, using machine learning and neural networks in Python. This book begins with the environment setup, understanding basic image-processing terminology, and exploring Python concepts that will be useful for implementing the algorithms discussed in the book. You will then cover all the core image processing algorithms in detail before moving onto the biggest computer vision library: OpenCV. You’ll see the OpenCV algorithms and how to use them for image processing. The next section looks at advanced machine learning and deep learning methods for image processing and classification. You’ll work with concepts such as pulse coupled neural networks, AdaBoost, XG boost, and convolutional neural networks for image-specific applications. Later you’ll explore how models are made in real time and then deployed using various DevOps tools. All the concepts in Practical Machine Learning and Image Processing are explained using real-life scenarios. After reading this book you will be able to apply image processing techniques and make machine learning models for customized application. What You Will Learn Discover image-processing algorithms and their applications using Python Explore image processing using the OpenCV library Use TensorFlow, scikit-learn, NumPy, and other libraries Work with machine learning and deep learning algorithms for image processing Apply image-processing techniques to five real-time projects Who This Book Is For Data scientists and software developers interested in image processing and computer vision.

## Introduction to Machine Learning with Python

Author | : Andreas C. Müller,Sarah Guido |

Publsiher | : "O'Reilly Media, Inc." |

Total Pages | : 400 |

Release | : 2016-09-26 |

ISBN 10 | : 1449369898 |

ISBN 13 | : 9781449369897 |

Language | : EN, FR, DE, ES & NL |

**Introduction to Machine Learning with Python Book Review:**

Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination. You’ll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Müller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book. With this book, you’ll learn: Fundamental concepts and applications of machine learning Advantages and shortcomings of widely used machine learning algorithms How to represent data processed by machine learning, including which data aspects to focus on Advanced methods for model evaluation and parameter tuning The concept of pipelines for chaining models and encapsulating your workflow Methods for working with text data, including text-specific processing techniques Suggestions for improving your machine learning and data science skills

## Practical Machine Learning with R

Author | : Brindha Priyadarshini Jeyaraman,Ludvig Renbo Olsen,Monicah Wambugu |

Publsiher | : Packt Publishing Ltd |

Total Pages | : 416 |

Release | : 2019-08-30 |

ISBN 10 | : 1838552847 |

ISBN 13 | : 9781838552848 |

Language | : EN, FR, DE, ES & NL |

**Practical Machine Learning with R Book Review:**

Understand how machine learning works and get hands-on experience of using R to build algorithms that can solve various real-world problems Key Features Gain a comprehensive overview of different machine learning techniques Explore various methods for selecting a particular algorithm Implement a machine learning project from problem definition through to the final model Book Description With huge amounts of data being generated every moment, businesses need applications that apply complex mathematical calculations to data repeatedly and at speed. With machine learning techniques and R, you can easily develop these kinds of applications in an efficient way. Practical Machine Learning with R begins by helping you grasp the basics of machine learning methods, while also highlighting how and why they work. You will understand how to get these algorithms to work in practice, rather than focusing on mathematical derivations. As you progress from one chapter to another, you will gain hands-on experience of building a machine learning solution in R. Next, using R packages such as rpart, random forest, and multiple imputation by chained equations (MICE), you will learn to implement algorithms including neural net classifier, decision trees, and linear and non-linear regression. As you progress through the book, you’ll delve into various machine learning techniques for both supervised and unsupervised learning approaches. In addition to this, you’ll gain insights into partitioning the datasets and mechanisms to evaluate the results from each model and be able to compare them. By the end of this book, you will have gained expertise in solving your business problems, starting by forming a good problem statement, selecting the most appropriate model to solve your problem, and then ensuring that you do not overtrain it. What you will learn Define a problem that can be solved by training a machine learning model Obtain, verify and clean data before transforming it into the correct format for use Perform exploratory analysis and extract features from data Build models for neural net, linear and non-linear regression, classification, and clustering Evaluate the performance of a model with the right metrics Implement a classification problem using the neural net package Employ a decision tree using the random forest library Who this book is for If you are a data analyst, data scientist, or a business analyst who wants to understand the process of machine learning and apply it to a real dataset using R, this book is just what you need. Data scientists who use Python and want to implement their machine learning solutions using R will also find this book very useful. The book will also enable novice programmers to start their journey in data science. Basic knowledge of any programming language is all you need to get started.

## Practical Machine Learning in R

Author | : Fred Nwanganga,Mike Chapple |

Publsiher | : John Wiley & Sons |

Total Pages | : 464 |

Release | : 2020-06-10 |

ISBN 10 | : 1119591511 |

ISBN 13 | : 9781119591511 |

Language | : EN, FR, DE, ES & NL |

**Practical Machine Learning in R Book Review:**

Guides professionals and students through the rapidly growing field of machine learning with hands-on examples in the popular R programming language Machine learning—a branch of Artificial Intelligence (AI) which enables computers to improve their results and learn new approaches without explicit instructions—allows organizations to reveal patterns in their data and incorporate predictive analytics into their decision-making process. Practical Machine Learning in R provides a hands-on approach to solving business problems with intelligent, self-learning computer algorithms. Bestselling author and data analytics experts Fred Nwanganga and Mike Chapple explain what machine learning is, demonstrate its organizational benefits, and provide hands-on examples created in the R programming language. A perfect guide for professional self-taught learners or students in an introductory machine learning course, this reader-friendly book illustrates the numerous real-world business uses of machine learning approaches. Clear and detailed chapters cover data wrangling, R programming with the popular RStudio tool, classification and regression techniques, performance evaluation, and more. Explores data management techniques, including data collection, exploration and dimensionality reduction Covers unsupervised learning, where readers identify and summarize patterns using approaches such as apriori, eclat and clustering Describes the principles behind the Nearest Neighbor, Decision Tree and Naive Bayes classification techniques Explains how to evaluate and choose the right model, as well as how to improve model performance using ensemble methods such as Random Forest and XGBoost Practical Machine Learning in R is a must-have guide for business analysts, data scientists, and other professionals interested in leveraging the power of AI to solve business problems, as well as students and independent learners seeking to enter the field.

## Pragmatic Machine Learning with Python

Author | : Avishek Nag |

Publsiher | : BPB Publications |

Total Pages | : 340 |

Release | : 2020-04-30 |

ISBN 10 | : 938984536X |

ISBN 13 | : 9789389845365 |

Language | : EN, FR, DE, ES & NL |

**Pragmatic Machine Learning with Python Book Review:**

An easy-to-understand guide to learn practical Machine Learning techniques with Mathematical foundations KEY FEATURES - A balanced combination of underlying mathematical theories & practical examples with Python code - Coverage of latest topics like multi-label classification, Text Mining, Doc2Vec, Word2Vec, XMeans clustering, unsupervised outlier detection, techniques to deploy ML models in production-grade systems with PMML, etc - Coverage of sufficient & relevant visualization techniques specific to any topic DESCRIPTION This book will be ideal for working professionals who want to learn Machine Learning from scratch. The first chapter will be an introductory chapter to make readers comfortable with the idea of Machine Learning and the required mathematical theories. There will be a balanced combination of underlying mathematical theories corresponding to any Machine Learning topic and its implementation using Python. Most of the implementations will be based on ‘scikit-learn,’ but other Python libraries like ‘Gensim’ or ‘PyTorch’ will also be used for some topics like text analytics or deep learning. The book will be divided into chapters based on primary Machine Learning topics like Classification, Regression, Clustering, Deep Learning, Text Mining, etc. The book will also explain different techniques of putting Machine Learning models into production-grade systems using Big Data or Non-Big Data flavors and standards for exporting models. WHAT WILL YOU LEARN - Get familiar with practical concepts of Machine Learning from ground zero - Learn how to deploy Machine Learning models in production - Understand how to do “Data Science Storytelling” - Explore the latest topics in the current industry about Machine Learning WHO THIS BOOK IS FOR This book would be ideal for experienced Software Professionals who are trying to get into the field of Machine Learning. Anyone who wishes to Learn Machine Learning concepts and models in the production lifecycle. TABLE OF CONTENTS 1. Introduction to Machine Learning & Mathematical preliminaries 2. Classification 3. Regression 4. Clustering 5. Deep Learning & Neural Networks 6. Miscellaneous Unsupervised Learning 7. Text Mining 8. Machine Learning models in production 9. Case Studies & Data Science Storytelling

## Data Mining Practical Machine Learning Tools and Techniques

Author | : Ian H. Witten,Eibe Frank,Mark A. Hall |

Publsiher | : Elsevier |

Total Pages | : 664 |

Release | : 2011-02-03 |

ISBN 10 | : 0080890369 |

ISBN 13 | : 9780080890364 |

Language | : EN, FR, DE, ES & NL |

**Data Mining Practical Machine Learning Tools and Techniques Book Review:**

Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise. Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks—in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization

## Advanced Data Analytics Using Python

Author | : Sayan Mukhopadhyay |

Publsiher | : Apress |

Total Pages | : 186 |

Release | : 2018-03-29 |

ISBN 10 | : 1484234502 |

ISBN 13 | : 9781484234501 |

Language | : EN, FR, DE, ES & NL |

**Advanced Data Analytics Using Python Book Review:**

Gain a broad foundation of advanced data analytics concepts and discover the recent revolution in databases such as Neo4j, Elasticsearch, and MongoDB. This book discusses how to implement ETL techniques including topical crawling, which is applied in domains such as high-frequency algorithmic trading and goal-oriented dialog systems. You’ll also see examples of machine learning concepts such as semi-supervised learning, deep learning, and NLP. Advanced Data Analytics Using Python also covers important traditional data analysis techniques such as time series and principal component analysis. After reading this book you will have experience of every technical aspect of an analytics project. You’ll get to know the concepts using Python code, giving you samples to use in your own projects. What You Will Learn Work with data analysis techniques such as classification, clustering, regression, and forecasting Handle structured and unstructured data, ETL techniques, and different kinds of databases such as Neo4j, Elasticsearch, MongoDB, and MySQL Examine the different big data frameworks, including Hadoop and Spark Discover advanced machine learning concepts such as semi-supervised learning, deep learning, and NLP Who This Book Is For Data scientists and software developers interested in the field of data analytics.

## Practical Machine Learning Innovations in Recommendation

Author | : Ted Dunning,Ellen Friedman,Ellen Friedman, M.D. |

Publsiher | : "O'Reilly Media, Inc." |

Total Pages | : 56 |

Release | : 2014-08-18 |

ISBN 10 | : 1491915722 |

ISBN 13 | : 9781491915721 |

Language | : EN, FR, DE, ES & NL |

**Practical Machine Learning Innovations in Recommendation Book Review:**

Building a simple but powerful recommendation system is much easier than you think. Approachable for all levels of expertise, this report explains innovations that make machine learning practical for business production settings—and demonstrates how even a small-scale development team can design an effective large-scale recommendation system. Apache Mahout committers Ted Dunning and Ellen Friedman walk you through a design that relies on careful simplification. You’ll learn how to collect the right data, analyze it with an algorithm from the Mahout library, and then easily deploy the recommender using search technology, such as Apache Solr or Elasticsearch. Powerful and effective, this efficient combination does learning offline and delivers rapid response recommendations in real time. Understand the tradeoffs between simple and complex recommenders Collect user data that tracks user actions—rather than their ratings Predict what a user wants based on behavior by others, using Mahoutfor co-occurrence analysis Use search technology to offer recommendations in real time, complete with item metadata Watch the recommender in action with a music service example Improve your recommender with dithering, multimodal recommendation, and other techniques

## Python for Data Analysis

Author | : Wes McKinney |

Publsiher | : "O'Reilly Media, Inc." |

Total Pages | : 452 |

Release | : 2013 |

ISBN 10 | : 1449319793 |

ISBN 13 | : 9781449319793 |

Language | : EN, FR, DE, ES & NL |

**Python for Data Analysis Book Review:**

Presents case studies and instructions on how to solve data analysis problems using Python.

## Python Machine Learning

Author | : Sebastian Raschka |

Publsiher | : Packt Publishing Ltd |

Total Pages | : 454 |

Release | : 2015-09-23 |

ISBN 10 | : 1783555149 |

ISBN 13 | : 9781783555147 |

Language | : EN, FR, DE, ES & NL |

**Python Machine Learning Book Review:**

Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.

## Python Machine Learning

Author | : Sebastian Raschka,Vahid Mirjalili |

Publsiher | : Packt Publishing Ltd |

Total Pages | : 622 |

Release | : 2017-09-20 |

ISBN 10 | : 1787126021 |

ISBN 13 | : 9781787126022 |

Language | : EN, FR, DE, ES & NL |

**Python Machine Learning Book Review:**

Unlock modern machine learning and deep learning techniques with Python by using the latest cutting-edge open source Python libraries. About This Book Second edition of the bestselling book on Machine Learning A practical approach to key frameworks in data science, machine learning, and deep learning Use the most powerful Python libraries to implement machine learning and deep learning Get to know the best practices to improve and optimize your machine learning systems and algorithms Who This Book Is For If you know some Python and you want to use machine learning and deep learning, pick up this book. Whether you want to start from scratch or extend your machine learning knowledge, this is an essential and unmissable resource. Written for developers and data scientists who want to create practical machine learning and deep learning code, this book is ideal for developers and data scientists who want to teach computers how to learn from data. What You Will Learn Understand the key frameworks in data science, machine learning, and deep learning Harness the power of the latest Python open source libraries in machine learning Explore machine learning techniques using challenging real-world data Master deep neural network implementation using the TensorFlow library Learn the mechanics of classification algorithms to implement the best tool for the job Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Delve deeper into textual and social media data using sentiment analysis In Detail Machine learning is eating the software world, and now deep learning is extending machine learning. Understand and work at the cutting edge of machine learning, neural networks, and deep learning with this second edition of Sebastian Raschka's bestselling book, Python Machine Learning. Thoroughly updated using the latest Python open source libraries, this book offers the practical knowledge and techniques you need to create and contribute to machine learning, deep learning, and modern data analysis. Fully extended and modernized, Python Machine Learning Second Edition now includes the popular TensorFlow deep learning library. The scikit-learn code has also been fully updated to include recent improvements and additions to this versatile machine learning library. Sebastian Raschka and Vahid Mirjalili's unique insight and expertise introduce you to machine learning and deep learning algorithms from scratch, and show you how to apply them to practical industry challenges using realistic and interesting examples. By the end of the book, you'll be ready to meet the new data analysis opportunities in today's world. If you've read the first edition of this book, you'll be delighted to find a new balance of classical ideas and modern insights into machine learning. Every chapter has been critically updated, and there are new chapters on key technologies. You'll be able to learn and work with TensorFlow more deeply than ever before, and get essential coverage of the Keras neural network library, along with the most recent updates to scikit-learn. Style and Approach Python Machine Learning Second Edition takes a practical, hands-on coding approach so you can learn about machine learning by coding with Python. This book moves fluently between the theoretical principles of machine learning and the practical details of implementation with Python.

## Data Science and Machine Learning

Author | : Dirk P. Kroese,Zdravko Botev,Thomas Taimre,Radislav Vaisman |

Publsiher | : CRC Press |

Total Pages | : 510 |

Release | : 2019-11-20 |

ISBN 10 | : 1000730778 |

ISBN 13 | : 9781000730777 |

Language | : EN, FR, DE, ES & NL |

**Data Science and Machine Learning Book Review:**

"This textbook is a well-rounded, rigorous, and informative work presenting the mathematics behind modern machine learning techniques. It hits all the right notes: the choice of topics is up-to-date and perfect for a course on data science for mathematics students at the advanced undergraduate or early graduate level. This book fills a sorely-needed gap in the existing literature by not sacrificing depth for breadth, presenting proofs of major theorems and subsequent derivations, as well as providing a copious amount of Python code. I only wish a book like this had been around when I first began my journey!" -Nicholas Hoell, University of Toronto "This is a well-written book that provides a deeper dive into data-scientific methods than many introductory texts. The writing is clear, and the text logically builds up regularization, classification, and decision trees. Compared to its probable competitors, it carves out a unique niche. -Adam Loy, Carleton College The purpose of Data Science and Machine Learning: Mathematical and Statistical Methods is to provide an accessible, yet comprehensive textbook intended for students interested in gaining a better understanding of the mathematics and statistics that underpin the rich variety of ideas and machine learning algorithms in data science. Key Features: Focuses on mathematical understanding. Presentation is self-contained, accessible, and comprehensive. Extensive list of exercises and worked-out examples. Many concrete algorithms with Python code. Full color throughout. The Authors: Dirk P. Kroese, PhD, is a Professor of Mathematics and Statistics at The University of Queensland. He has published over 120 articles and five books in a wide range of areas in mathematics, statistics, data science, machine learning, and Monte Carlo methods. He is a pioneer of the well-known Cross-Entropy method—an adaptive Monte Carlo technique, which is being used around the world to help solve difficult estimation and optimization problems in science, engineering, and finance. Zdravko Botev, PhD, is an Australian Mathematical Science Institute Lecturer in Data Science and Machine Learning with an appointment at the University of New South Wales in Sydney, Australia. He is the recipient of the 2018 Christopher Heyde Medal of the Australian Academy of Science for distinguished research in the Mathematical Sciences. Thomas Taimre, PhD, is a Senior Lecturer of Mathematics and Statistics at The University of Queensland. His research interests range from applied probability and Monte Carlo methods to applied physics and the remarkably universal self-mixing effect in lasers. He has published over 100 articles, holds a patent, and is the coauthor of Handbook of Monte Carlo Methods (Wiley). Radislav Vaisman, PhD, is a Lecturer of Mathematics and Statistics at The University of Queensland. His research interests lie at the intersection of applied probability, machine learning, and computer science. He has published over 20 articles and two books.

## Practical Time Series Analysis

Author | : Aileen Nielsen |

Publsiher | : O'Reilly Media |

Total Pages | : 504 |

Release | : 2019-09-20 |

ISBN 10 | : 1492041629 |

ISBN 13 | : 9781492041627 |

Language | : EN, FR, DE, ES & NL |

**Practical Time Series Analysis Book Review:**

Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase. Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challengesin time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly. You’ll get the guidance you need to confidently: Find and wrangle time series data Undertake exploratory time series data analysis Store temporal data Simulate time series data Generate and select features for a time series Measure error Forecast and classify time series with machine or deep learning Evaluate accuracy and performance

## Python Data Science Handbook

Author | : Jake VanderPlas |

Publsiher | : "O'Reilly Media, Inc." |

Total Pages | : 548 |

Release | : 2016-11-21 |

ISBN 10 | : 1491912138 |

ISBN 13 | : 9781491912133 |

Language | : EN, FR, DE, ES & NL |

**Python Data Science Handbook Book Review:**

For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms