Medical Image Analysis

Medical Image Analysis
Author: Atam P. Dhawan
Publsiher: John Wiley & Sons
Total Pages: 400
Release: 2011-03-29
ISBN 10: 0470922893
ISBN 13: 9780470922897
Language: EN, FR, DE, ES & NL

Medical Image Analysis Book Review:

The expanded and revised edition will split Chapter 4 to include more details and examples in FMRI, DTI, and DWI for MR image modalities. The book will also expand ultrasound imaging to 3-D dynamic contrast ultrasound imaging in a separate chapter. A new chapter on Optical Imaging Modalities elaborating microscopy, confocal microscopy, endoscopy, optical coherent tomography, fluorescence and molecular imaging will be added. Another new chapter on Simultaneous Multi-Modality Medical Imaging including CT-SPECT and CT-PET will also be added. In the image analysis part, chapters on image reconstructions and visualizations will be significantly enhanced to include, respectively, 3-D fast statistical estimation based reconstruction methods, and 3-D image fusion and visualization overlaying multi-modality imaging and information. A new chapter on Computer-Aided Diagnosis and image guided surgery, and surgical and therapeutic intervention will also be added. A companion site containing power point slides, author biography, corrections to the first edition and images from the text can be found here: ftp://ftp.wiley.com/public/sci_tech_med/medical_image/ Send an email to: [email protected] to obtain a solutions manual. Please include your affiliation in your email.

Deep Learning for Medical Image Analysis

Deep Learning for Medical Image Analysis
Author: S. Kevin Zhou,Hayit Greenspan,Dinggang Shen
Publsiher: Academic Press
Total Pages: 458
Release: 2017-01-18
ISBN 10: 0128104090
ISBN 13: 9780128104095
Language: EN, FR, DE, ES & NL

Deep Learning for Medical Image Analysis Book Review:

Deep learning is providing exciting solutions for medical image analysis problems and is seen as a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component have been applied to medical image detection, segmentation and registration, and computer-aided analysis, using a wide variety of application areas. Deep Learning for Medical Image Analysis is a great learning resource for academic and industry researchers in medical imaging analysis, and for graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Covers common research problems in medical image analysis and their challenges Describes deep learning methods and the theories behind approaches for medical image analysis Teaches how algorithms are applied to a broad range of application areas, including Chest X-ray, breast CAD, lung and chest, microscopy and pathology, etc. Includes a Foreword written by Nicholas Ayache

Biomedical Image Analysis

Biomedical Image Analysis
Author: Rangaraj M. Rangayyan
Publsiher: CRC Press
Total Pages: 1312
Release: 2004-12-30
ISBN 10: 0203492544
ISBN 13: 9780203492543
Language: EN, FR, DE, ES & NL

Biomedical Image Analysis Book Review:

Computers have become an integral part of medical imaging systems and are used for everything from data acquisition and image generation to image display and analysis. As the scope and complexity of imaging technology steadily increase, more advanced techniques are required to solve the emerging challenges. Biomedical Image Analysis demonstr

Advances in Deep Learning for Medical Image Analysis

Advances in Deep Learning for Medical Image Analysis
Author: Archana Mire,Vinayak Elangovan,Shailaja Patil
Publsiher: CRC Press
Total Pages: 168
Release: 2022-04-28
ISBN 10: 1000575950
ISBN 13: 9781000575958
Language: EN, FR, DE, ES & NL

Advances in Deep Learning for Medical Image Analysis Book Review:

This reference text introduces the classical probabilistic model, deep learning, and big data techniques for improving medical imaging and detecting various diseases. The text addresses a wide variety of application areas in medical imaging where deep learning techniques provide solutions with lesser human intervention and reduced time. It comprehensively covers important machine learning for signal analysis, deep learning techniques for cancer detection, diabetic cases, skin image analysis, Alzheimer’s disease detection, coronary disease detection, medical image forensic, fetal anomaly detection, and plant phytology. The text will serve as a useful text for graduate students and academic researchers in the fields of electronics engineering, computer science, biomedical engineering, and electrical engineering.

Handbook of Medical Imaging

Handbook of Medical Imaging
Author: Anonim
Publsiher: Academic Press
Total Pages: 901
Release: 2000-10-09
ISBN 10: 0080533108
ISBN 13: 9780080533100
Language: EN, FR, DE, ES & NL

Handbook of Medical Imaging Book Review:

In recent years, the remarkable advances in medical imaging instruments have increased their use considerably for diagnostics as well as planning and follow-up of treatment. Emerging from the fields of radiology, medical physics and engineering, medical imaging no longer simply deals with the technology and interpretation of radiographic images. The limitless possibilities presented by computer science and technology, coupled with engineering advances in signal processing, optics and nuclear medicine have created the vastly expanded field of medical imaging. The Handbook of Medical Imaging is the first comprehensive compilation of the concepts and techniques used to analyze and manipulate medical images after they have been generated or digitized. The Handbook is organized in six sections that relate to the main functions needed for processing: enhancement, segmentation, quantification, registration, visualization as well as compression storage and telemedicine. * Internationally renowned authors(Johns Hopkins, Harvard, UCLA, Yale, Columbia, UCSF) * Includes imaging and visualization * Contains over 60 pages of stunning, four-color images

Medical Image Processing

Medical Image Processing
Author: Geoff Dougherty
Publsiher: Springer Science & Business Media
Total Pages: 380
Release: 2011-07-25
ISBN 10: 9781441997791
ISBN 13: 1441997792
Language: EN, FR, DE, ES & NL

Medical Image Processing Book Review:

The book is designed for end users in the field of digital imaging, who wish to update their skills and understanding with the latest techniques in image analysis. The book emphasizes the conceptual framework of image analysis and the effective use of image processing tools. It uses applications in a variety of fields to demonstrate and consolidate both specific and general concepts, and to build intuition, insight and understanding. Although the chapters are essentially self-contained they reference other chapters to form an integrated whole. Each chapter employs a pedagogical approach to ensure conceptual learning before introducing specific techniques and “tricks of the trade”. The book concentrates on a number of current research applications, and will present a detailed approach to each while emphasizing the applicability of techniques to other problems. The field of topics is wide, ranging from compressive (non-uniform) sampling in MRI, through automated retinal vessel analysis to 3-D ultrasound imaging and more. The book is amply illustrated with figures and applicable medical images. The reader will learn the techniques which experts in the field are currently employing and testing to solve particular research problems, and how they may be applied to other problems.

Guide to Medical Image Analysis

Guide to Medical Image Analysis
Author: Klaus D. Toennies
Publsiher: Springer
Total Pages: 589
Release: 2017-03-29
ISBN 10: 1447173201
ISBN 13: 9781447173205
Language: EN, FR, DE, ES & NL

Guide to Medical Image Analysis Book Review:

This comprehensive guide provides a uniquely practical, application-focused introduction to medical image analysis. This fully updated new edition has been enhanced with material on the latest developments in the field, whilst retaining the original focus on segmentation, classification and registration. Topics and features: presents learning objectives, exercises and concluding remarks in each chapter; describes a range of common imaging techniques, reconstruction techniques and image artifacts, and discusses the archival and transfer of images; reviews an expanded selection of techniques for image enhancement, feature detection, feature generation, segmentation, registration, and validation; examines analysis methods in view of image-based guidance in the operating room (NEW); discusses the use of deep convolutional networks for segmentation and labeling tasks (NEW); includes appendices on Markov random field optimization, variational calculus and principal component analysis.

Riemannian Geometric Statistics in Medical Image Analysis

Riemannian Geometric Statistics in Medical Image Analysis
Author: Xavier Pennec,Stefan Sommer,Tom Fletcher
Publsiher: Academic Press
Total Pages: 636
Release: 2019-09-02
ISBN 10: 0128147261
ISBN 13: 9780128147269
Language: EN, FR, DE, ES & NL

Riemannian Geometric Statistics in Medical Image Analysis Book Review:

Over the past 15 years, there has been a growing need in the medical image computing community for principled methods to process nonlinear geometric data. Riemannian geometry has emerged as one of the most powerful mathematical and computational frameworks for analyzing such data. Riemannian Geometric Statistics in Medical Image Analysis is a complete reference on statistics on Riemannian manifolds and more general nonlinear spaces with applications in medical image analysis. It provides an introduction to the core methodology followed by a presentation of state-of-the-art methods. Beyond medical image computing, the methods described in this book may also apply to other domains such as signal processing, computer vision, geometric deep learning, and other domains where statistics on geometric features appear. As such, the presented core methodology takes its place in the field of geometric statistics, the statistical analysis of data being elements of nonlinear geometric spaces. The foundational material and the advanced techniques presented in the later parts of the book can be useful in domains outside medical imaging and present important applications of geometric statistics methodology Content includes: The foundations of Riemannian geometric methods for statistics on manifolds with emphasis on concepts rather than on proofs Applications of statistics on manifolds and shape spaces in medical image computing Diffeomorphic deformations and their applications As the methods described apply to domains such as signal processing (radar signal processing and brain computer interaction), computer vision (object and face recognition), and other domains where statistics of geometric features appear, this book is suitable for researchers and graduate students in medical imaging, engineering and computer science. A complete reference covering both the foundations and state-of-the-art methods Edited and authored by leading researchers in the field Contains theory, examples, applications, and algorithms Gives an overview of current research challenges and future applications

Soft Computing Based Medical Image Analysis

Soft Computing Based Medical Image Analysis
Author: Nilanjan Dey,Amira Ashour,Fuquian Shi,Valentina E. Balas
Publsiher: Academic Press
Total Pages: 292
Release: 2018-01-18
ISBN 10: 0128131748
ISBN 13: 9780128131749
Language: EN, FR, DE, ES & NL

Soft Computing Based Medical Image Analysis Book Review:

Soft Computing Based Medical Image Analysis presents the foremost techniques of soft computing in medical image analysis and processing. It includes image enhancement, segmentation, classification-based soft computing, and their application in diagnostic imaging, as well as an extensive background for the development of intelligent systems based on soft computing used in medical image analysis and processing. The book introduces the theory and concepts of digital image analysis and processing based on soft computing with real-world medical imaging applications. Comparative studies for soft computing based medical imaging techniques and traditional approaches in medicine are addressed, providing flexible and sophisticated application-oriented solutions. Covers numerous soft computing approaches, including fuzzy logic, neural networks, evolutionary computing, rough sets and Swarm intelligence Presents transverse research in soft computing formation from various engineering and industrial sectors in the medical domain Highlights challenges and the future scope for soft computing based medical analysis and processing techniques

Advanced Machine Vision Paradigms for Medical Image Analysis

Advanced Machine Vision Paradigms for Medical Image Analysis
Author: Tapan K. Gandhi,Siddhartha Bhattacharyya,Sourav De,Debanjan Konar,Sandip Dey
Publsiher: Academic Press
Total Pages: 308
Release: 2020-08-11
ISBN 10: 0128192968
ISBN 13: 9780128192962
Language: EN, FR, DE, ES & NL

Advanced Machine Vision Paradigms for Medical Image Analysis Book Review:

Computer vision and machine intelligence paradigms are prominent in the domain of medical image applications, including computer assisted diagnosis, image guided radiation therapy, landmark detection, imaging genomics, and brain connectomics. Medical image analysis and understanding are daunting tasks owing to the massive influx of multi-modal medical image data generated during routine clinal practice. Advanced computer vision and machine intelligence approaches have been employed in recent years in the field of image processing and computer vision. However, due to the unstructured nature of medical imaging data and the volume of data produced during routine clinical processes, the applicability of these meta-heuristic algorithms remains to be investigated. Advanced Machine Vision Paradigms for Medical Image Analysis presents an overview of how medical imaging data can be analyzed to provide better diagnosis and treatment of disease. Computer vision techniques can explore texture, shape, contour and prior knowledge along with contextual information, from image sequence and 3D/4D information which helps with better human understanding. Many powerful tools have been developed through image segmentation, machine learning, pattern classification, tracking, and reconstruction to surface much needed quantitative information not easily available through the analysis of trained human specialists. The aim of the book is for medical imaging professionals to acquire and interpret the data, and for computer vision professionals to learn how to provide enhanced medical information by using computer vision techniques. The ultimate objective is to benefit patients without adding to already high healthcare costs. Explores major emerging trends in technology which are supporting the current advancement of medical image analysis with the help of computational intelligence Highlights the advancement of conventional approaches in the field of medical image processing Investigates novel techniques and reviews the state-of-the-art in the areas of machine learning, computer vision, soft computing techniques, as well as their applications in medical image analysis

Deep Learning in Medical Image Analysis

Deep Learning in Medical Image Analysis
Author: Gobert Lee,Hiroshi Fujita
Publsiher: Springer Nature
Total Pages: 181
Release: 2020-02-06
ISBN 10: 3030331288
ISBN 13: 9783030331283
Language: EN, FR, DE, ES & NL

Deep Learning in Medical Image Analysis Book Review:

This book presents cutting-edge research and applications of deep learning in a broad range of medical imaging scenarios, such as computer-aided diagnosis, image segmentation, tissue recognition and classification, and other areas of medical and healthcare problems. Each of its chapters covers a topic in depth, ranging from medical image synthesis and techniques for muskuloskeletal analysis to diagnostic tools for breast lesions on digital mammograms and glaucoma on retinal fundus images. It also provides an overview of deep learning in medical image analysis and highlights issues and challenges encountered by researchers and clinicians, surveying and discussing practical approaches in general and in the context of specific problems. Academics, clinical and industry researchers, as well as young researchers and graduate students in medical imaging, computer-aided-diagnosis, biomedical engineering and computer vision will find this book a great reference and very useful learning resource.

Advances in Computational Techniques for Biomedical Image Analysis

Advances in Computational Techniques for Biomedical Image Analysis
Author: Deepika Koundal,Savita Gupta
Publsiher: Academic Press
Total Pages: 322
Release: 2020-05-28
ISBN 10: 0128204117
ISBN 13: 9780128204115
Language: EN, FR, DE, ES & NL

Advances in Computational Techniques for Biomedical Image Analysis Book Review:

Advances in Computational Techniques for Biomedical Image Analysis: Methods and Applications focuses on post-acquisition challenges such as image enhancement, detection of edges and objects, analysis of shape, quantification of texture and sharpness, and pattern analysis. It discusses the archiving and transfer of images, presents a selection of techniques for the enhancement of contrast and edges, for noise reduction and for edge-preserving smoothing. It examines various feature detection and segmentation techniques, together with methods for computing a registration or normalization transformation. Advances in Computational Techniques for Biomedical Image Analysis: Method and Applications is ideal for researchers and post graduate students developing systems and tools for health-care systems. Covers various challenges and common research issues related to biomedical image analysis Describes advanced computational approaches for biomedical image analysis Shows how algorithms are applied to a broad range of application areas, including Chest X-ray, breast CAD, lung and chest, microscopy and pathology, etc. Explores a range of computational algorithms and techniques, such as neural networks, fuzzy sets, and evolutionary optimization Explores cloud based medical imaging together with medical imaging security and forensics

Medical and Biological Image Analysis

Medical and Biological Image Analysis
Author: Anonim
Publsiher: BoD – Books on Demand
Total Pages: 134
Release: 2018-07-04
ISBN 10: 1789233305
ISBN 13: 9781789233308
Language: EN, FR, DE, ES & NL

Medical and Biological Image Analysis Book Review:

This book deals with medical image analysis methods. In particular, it contains two significant chapters on image segmentation as well as some selected examples of the application of image analysis and processing methods. Despite the significant development of information technology methods used in modern image analysis and processing algorithms, the segmentation process remains open. This is mainly due to intra-patient variability and/or scene diversity. Segmentation is equally difficult in the case of ultrasound imaging and depends on the location of the probe or the contact force. Regardless of the imaging method, segmentation must be tailored for a specific application in almost every case. These types of application areas for various imaging methods are included in this book.

Cloud Based Benchmarking of Medical Image Analysis

Cloud Based Benchmarking of Medical Image Analysis
Author: Allan Hanbury,Henning Müller,Georg Langs
Publsiher: Springer
Total Pages: 254
Release: 2017-05-16
ISBN 10: 3319496441
ISBN 13: 9783319496443
Language: EN, FR, DE, ES & NL

Cloud Based Benchmarking of Medical Image Analysis Book Review:

This book is open access under a CC BY-NC 2.5 license. This book presents the VISCERAL project benchmarks for analysis and retrieval of 3D medical images (CT and MRI) on a large scale, which used an innovative cloud-based evaluation approach where the image data were stored centrally on a cloud infrastructure and participants placed their programs in virtual machines on the cloud. The book presents the points of view of both the organizers of the VISCERAL benchmarks and the participants. The book is divided into five parts. Part I presents the cloud-based benchmarking and Evaluation-as-a-Service paradigm that the VISCERAL benchmarks used. Part II focuses on the datasets of medical images annotated with ground truth created in VISCERAL that continue to be available for research. It also covers the practical aspects of obtaining permission to use medical data and manually annotating 3D medical images efficiently and effectively. The VISCERAL benchmarks are described in Part III, including a presentation and analysis of metrics used in evaluation of medical image analysis and search. Lastly, Parts IV and V present reports by some of the participants in the VISCERAL benchmarks, with Part IV devoted to the anatomy benchmarks and Part V to the retrieval benchmark. This book has two main audiences: the datasets as well as the segmentation and retrieval results are of most interest to medical imaging researchers, while eScience and computational science experts benefit from the insights into using the Evaluation-as-a-Service paradigm for evaluation and benchmarking on huge amounts of data.

Medical Image Analysis and Informatics

Medical Image Analysis and Informatics
Author: Paulo Mazzoncini de Azevedo-Marques,Arianna Mencattini,Marcello Salmeri,Rangaraj M. Rangayyan
Publsiher: CRC Press
Total Pages: 518
Release: 2017-11-23
ISBN 10: 1498753205
ISBN 13: 9781498753203
Language: EN, FR, DE, ES & NL

Medical Image Analysis and Informatics Book Review:

With the development of rapidly increasing medical imaging modalities and their applications, the need for computers and computing in image generation, processing, visualization, archival, transmission, modeling, and analysis has grown substantially. Computers are being integrated into almost every medical imaging system. Medical Image Analysis and Informatics demonstrates how quantitative analysis becomes possible by the application of computational procedures to medical images. Furthermore, it shows how quantitative and objective analysis facilitated by medical image informatics, CBIR, and CAD could lead to improved diagnosis by physicians. Whereas CAD has become a part of the clinical workflow in the detection of breast cancer with mammograms, it is not yet established in other applications. CBIR is an alternative and complementary approach for image retrieval based on measures derived from images, which could also facilitate CAD. This book shows how digital image processing techniques can assist in quantitative analysis of medical images, how pattern recognition and classification techniques can facilitate CAD, and how CAD systems can assist in achieving efficient diagnosis, in designing optimal treatment protocols, in analyzing the effects of or response to treatment, and in clinical management of various conditions. The book affirms that medical imaging, medical image analysis, medical image informatics, CBIR, and CAD are proven as well as essential techniques for health care.

Pattern Recognition and Signal Analysis in Medical Imaging

Pattern Recognition and Signal Analysis in Medical Imaging
Author: Anke Meyer-Baese,Volker J. Schmid
Publsiher: Elsevier
Total Pages: 466
Release: 2014-03-21
ISBN 10: 0124166156
ISBN 13: 9780124166158
Language: EN, FR, DE, ES & NL

Pattern Recognition and Signal Analysis in Medical Imaging Book Review:

Medical imaging is one of the heaviest funded biomedical engineering research areas. The second edition of Pattern Recognition and Signal Analysis in Medical Imaging brings sharp focus to the development of integrated systems for use in the clinical sector, enabling both imaging and the automatic assessment of the resultant data. Since the first edition, there has been tremendous development of new, powerful technologies for detecting, storing, transmitting, analyzing, and displaying medical images. Computer-aided analytical techniques, coupled with a continuing need to derive more information from medical images, has led to a growing application of digital processing techniques in cancer detection as well as elsewhere in medicine. This book is an essential tool for students and professionals, compiling and explaining proven and cutting-edge methods in pattern recognition for medical imaging. New edition has been expanded to cover signal analysis, which was only superficially covered in the first edition New chapters cover Cluster Validity Techniques, Computer-Aided Diagnosis Systems in Breast MRI, Spatio-Temporal Models in Functional, Contrast-Enhanced and Perfusion Cardiovascular MRI Gives readers an unparalleled insight into the latest pattern recognition and signal analysis technologies, modeling, and applications

Medical Image Analysis Methods

Medical Image Analysis Methods
Author: Lena Costaridou
Publsiher: CRC Press
Total Pages: 504
Release: 2005-07-13
ISBN 10: 0203500458
ISBN 13: 9780203500453
Language: EN, FR, DE, ES & NL

Medical Image Analysis Methods Book Review:

To successfully detect and diagnose disease, it is vital for medical diagnosticians to properly apply the latest medical imaging technologies. It is a worrisome reality that due to either the nature or volume of some of the images provided, early or obscured signs of disease can go undetected or be misdiagnosed. To combat these inaccuracies, diagno

Handbook of Medical Image Processing and Analysis

Handbook of Medical Image Processing and Analysis
Author: Isaac Bankman
Publsiher: Elsevier
Total Pages: 1000
Release: 2008-12-24
ISBN 10: 9780080559148
ISBN 13: 008055914X
Language: EN, FR, DE, ES & NL

Handbook of Medical Image Processing and Analysis Book Review:

The Handbook of Medical Image Processing and Analysis is a comprehensive compilation of concepts and techniques used for processing and analyzing medical images after they have been generated or digitized. The Handbook is organized into six sections that relate to the main functions: enhancement, segmentation, quantification, registration, visualization, and compression, storage and communication. The second edition is extensively revised and updated throughout, reflecting new technology and research, and includes new chapters on: higher order statistics for tissue segmentation; tumor growth modeling in oncological image analysis; analysis of cell nuclear features in fluorescence microscopy images; imaging and communication in medical and public health informatics; and dynamic mammogram retrieval from web-based image libraries. For those looking to explore advanced concepts and access essential information, this second edition of Handbook of Medical Image Processing and Analysis is an invaluable resource. It remains the most complete single volume reference for biomedical engineers, researchers, professionals and those working in medical imaging and medical image processing. Dr. Isaac N. Bankman is the supervisor of a group that specializes on imaging, laser and sensor systems, modeling, algorithms and testing at the Johns Hopkins University Applied Physics Laboratory. He received his BSc degree in Electrical Engineering from Bogazici University, Turkey, in 1977, the MSc degree in Electronics from University of Wales, Britain, in 1979, and a PhD in Biomedical Engineering from the Israel Institute of Technology, Israel, in 1985. He is a member of SPIE. Includes contributions from internationally renowned authors from leading institutions NEW! 35 of 56 chapters have been revised and updated. Additionally, five new chapters have been added on important topics incluling Nonlinear 3D Boundary Detection, Adaptive Algorithms for Cancer Cytological Diagnosis, Dynamic Mammogram Retrieval from Web-Based Image Libraries, Imaging and Communication in Health Informatics and Tumor Growth Modeling in Oncological Image Analysis. Provides a complete collection of algorithms in computer processing of medical images Contains over 60 pages of stunning, four-color images

Classification Techniques for Medical Image Analysis and Computer Aided Diagnosis

Classification Techniques for Medical Image Analysis and Computer Aided Diagnosis
Author: Nilanjan Dey
Publsiher: Academic Press
Total Pages: 218
Release: 2019-07-31
ISBN 10: 0128180056
ISBN 13: 9780128180051
Language: EN, FR, DE, ES & NL

Classification Techniques for Medical Image Analysis and Computer Aided Diagnosis Book Review:

Classification Techniques for Medical Image Analysis and Computer Aided Diagnosis covers the most current advances on how to apply classification techniques to a wide variety of clinical applications that are appropriate for researchers and biomedical engineers in the areas of machine learning, deep learning, data analysis, data management and computer-aided diagnosis (CAD) systems design. The book covers several complex image classification problems using pattern recognition methods, including Artificial Neural Networks (ANN), Support Vector Machines (SVM), Bayesian Networks (BN) and deep learning. Further, numerous data mining techniques are discussed, as they have proven to be good classifiers for medical images. Examines the methodology of classification of medical images that covers the taxonomy of both supervised and unsupervised models, algorithms, applications and challenges Discusses recent advances in Artificial Neural Networks, machine learning, and deep learning in clinical applications Introduces several techniques for medical image processing and analysis for CAD systems design

Medical Image Processing Reconstruction and Analysis

Medical Image Processing  Reconstruction and Analysis
Author: Jiri Jan
Publsiher: CRC Press
Total Pages: 574
Release: 2019-08-30
ISBN 10: 135138791X
ISBN 13: 9781351387910
Language: EN, FR, DE, ES & NL

Medical Image Processing Reconstruction and Analysis Book Review:

Differently oriented specialists and students involved in image processing and analysis need to have a firm grasp of concepts and methods used in this now widely utilized area. This book aims at being a single-source reference providing such foundations in the form of theoretical yet clear and easy to follow explanations of underlying generic concepts. Medical Image Processing, Reconstruction and Analysis – Concepts and Methods explains the general principles and methods of image processing and analysis, focusing namely on applications used in medical imaging. The content of this book is divided into three parts: Part I – Images as Multidimensional Signals provides the introduction to basic image processing theory, explaining it for both analogue and digital image representations. Part II – Imaging Systems as Data Sources offers a non-traditional view on imaging modalities, explaining their principles influencing properties of the obtained images that are to be subsequently processed by methods described in this book. Newly, principles of novel modalities, as spectral CT, functional MRI, ultrafast planar-wave ultrasonography and optical coherence tomography are included. Part III – Image Processing and Analysis focuses on tomographic image reconstruction, image fusion and methods of image enhancement and restoration; further it explains concepts of low-level image analysis as texture analysis, image segmentation and morphological transforms. A new chapter deals with selected areas of higher-level analysis, as principal and independent component analysis and particularly the novel analytic approach based on deep learning. Briefly, also the medical image-processing environment is treated, including processes for image archiving and communication. Features Presents a theoretically exact yet understandable explanation of image processing and analysis concepts and methods Offers practical interpretations of all theoretical conclusions, as derived in the consistent explanation Provides a concise treatment of a wide variety of medical imaging modalities including novel ones, with respect to properties of provided image data