Mastering Data Modeling

Mastering Data Modeling
Author: John Carlis
Publsiher: Addison-Wesley Professional
Total Pages: 329
Release: 2000-11-10
ISBN 10: 0134176537
ISBN 13: 9780134176536
Language: EN, FR, DE, ES & NL

Mastering Data Modeling Book Review:

Data modeling is one of the most critical phases in the database application development process, but also the phase most likely to fail. A master data modeler must come into any organization, understand its data requirements, and skillfully model the data for applications that most effectively serve organizational needs. Mastering Data Modeling is a complete guide to becoming a successful data modeler. Featuring a requirements-driven approach, this book clearly explains fundamental concepts, introduces a user-oriented data modeling notation, and describes a rigorous, step-by-step process for collecting, modeling, and documenting the kinds of data that users need. Assuming no prior knowledge, Mastering Data Modeling sets forth several fundamental problems of data modeling, such as reconciling the software developer's demand for rigor with the users' equally valid need to speak their own (sometimes vague) natural language. In addition, it describes the good habits that help you respond to these fundamental problems. With these good habits in mind, the book describes the Logical Data Structure (LDS) notation and the process of controlled evolution by which you can create low-cost, user-approved data models that resist premature obsolescence. Also included is an encyclopedic analysis of all data shapes that you will encounter. Most notably, the book describes The Flow, a loosely scripted process by which you and the users gradually but continuously improve an LDS until it faithfully represents the information needs. Essential implementation and technology issues are also covered. You will learn about such vital topics as: The fundamental problems of data modeling The good habits that help a data modeler be effective and economical LDS notation, which encourages these good habits How to read an LDS aloud--in declarative English sentences How to write a well-formed (syntactically correct) LDS How to get users to name the parts of an LDS with words from their own business vocabulary How to visualize data for an LDS A catalog of LDS shapes that recur throughout all data models The Flow--the template for your conversations with users How to document an LDS for users, data modelers, and technologists How to map an LDS to a relational schema How LDS differs from other notations and why "Story interludes" appear throughout the book, illustrating real-world successes of the LDS notation and controlled evolution process. Numerous exercises help you master critical skills. In addition, two detailed, annotated sample conversations with users show you the process of controlled evolution in action.

Mastering Data Analysis with R

Mastering Data Analysis with R
Author: Gergely Daroczi
Publsiher: Packt Publishing Ltd
Total Pages: 396
Release: 2015-09-30
ISBN 10: 1783982039
ISBN 13: 9781783982035
Language: EN, FR, DE, ES & NL

Mastering Data Analysis with R Book Review:

Gain sharp insights into your data and solve real-world data science problems with R—from data munging to modeling and visualization About This Book Handle your data with precision and care for optimal business intelligence Restructure and transform your data to inform decision-making Packed with practical advice and tips to help you get to grips with data mining Who This Book Is For If you are a data scientist or R developer who wants to explore and optimize your use of R's advanced features and tools, this is the book for you. A basic knowledge of R is required, along with an understanding of database logic. What You Will Learn Connect to and load data from R's range of powerful databases Successfully fetch and parse structured and unstructured data Transform and restructure your data with efficient R packages Define and build complex statistical models with glm Develop and train machine learning algorithms Visualize social networks and graph data Deploy supervised and unsupervised classification algorithms Discover how to visualize spatial data with R In Detail R is an essential language for sharp and successful data analysis. Its numerous features and ease of use make it a powerful way of mining, managing, and interpreting large sets of data. In a world where understanding big data has become key, by mastering R you will be able to deal with your data effectively and efficiently. This book will give you the guidance you need to build and develop your knowledge and expertise. Bridging the gap between theory and practice, this book will help you to understand and use data for a competitive advantage. Beginning with taking you through essential data mining and management tasks such as munging, fetching, cleaning, and restructuring, the book then explores different model designs and the core components of effective analysis. You will then discover how to optimize your use of machine learning algorithms for classification and recommendation systems beside the traditional and more recent statistical methods. Style and approach Covering the essential tasks and skills within data science, Mastering Data Analysis provides you with solutions to the challenges of data science. Each section gives you a theoretical overview before demonstrating how to put the theory to work with real-world use cases and hands-on examples.

Data Modeling Made Simple with CA ERwin Data Modeler r8

Data Modeling Made Simple with CA ERwin Data Modeler r8
Author: Donna Burbank,Steve Hoberman
Publsiher: Technics Publications
Total Pages: 536
Release: 2011-08-01
ISBN 10: 1634620690
ISBN 13: 9781634620697
Language: EN, FR, DE, ES & NL

Data Modeling Made Simple with CA ERwin Data Modeler r8 Book Review:

Data Modeling Made Simple with CA ERwin Data Modeler r8 will provide the business or IT professional with a practical working knowledge of data modeling concepts and best practices, and how to apply these principles with CA ERwin Data Modeler r8. You’ll build many CA ERwin data models along the way, mastering first the fundamentals and later in the book the more advanced features of CA ERwin Data Modeler. This book combines real-world experience and best practices with down to earth advice, humor, and even cartoons to help you master the following ten objectives: 1. Understand the basics of data modeling and relational theory, and how to apply these skills using CA ERwin Data Modeler 2. Read a data model of any size and complexity with the same confidence as reading a book 3. Understand the difference between conceptual, logical, and physical models, and how to effectively build these models using CA ERwin’s Data Modelers Design Layer Architecture 4. Apply techniques to turn a logical data model into an efficient physical design and vice-versa through forward and reverse engineering, for both ‘top down’ and bottom-up design 5. Learn how to create reusable domains, naming standards, UDPs, and model templates in CA ERwin Data Modeler to reduce modeling time, improve data quality, and increase enterprise consistency 6. Share data model information with various audiences using model formatting and layout techniques, reporting, and metadata exchange 7. Use the new workspace customization features in CA ERwin Data Modeler r8 to create a workflow suited to your own individual needs 8. Leverage the new Bulk Editing features in CA ERwin Data Modeler r8 for mass metadata updates, as well as import/export with Microsoft Excel 9. Compare and merge model changes using CA ERwin Data Modelers Complete Compare features 10. Optimize the organization and layout of your data models through the use of Subject Areas, Diagrams, Display Themes, and more Section I provides an overview of data modeling: what it is, and why it is needed. The basic features of CA ERwin Data Modeler are introduced with a simple, easy-to-follow example. Section II introduces the basic building blocks of a data model, including entities, relationships, keys, and more. How-to examples using CA ERwin Data Modeler are provided for each of these building blocks, as well as ‘real world’ scenarios for context. Section III covers the creation of reusable standards, and their importance in the organization. From standard data modeling constructs such as domains to CA ERwin-specific features such as UDPs, this section covers step-by-step examples of how to create these standards in CA ERwin Data Modeling, from creation, to template building, to sharing standards with end users through reporting and queries. Section IV discusses conceptual, logical, and physical data models, and provides a comprehensive case study using CA ERwin Data Modeler to show the interrelationships between these models using CA ERwin’s Design Layer Architecture. Real world examples are provided from requirements gathering, to working with business sponsors, to the hands-on nitty-gritty details of building conceptual, logical, and physical data models with CA ERwin Data Modeler r8. From the Foreword by Tom Bilcze, President, CA Technologies Modeling Global User Community: Data Modeling Made Simple with CA ERwin Data Modeler r8 is an excellent resource for the ERwin community. The data modeling community is a diverse collection of data professionals with many perspectives of data modeling and different levels of skill and experience. Steve Hoberman and Donna Burbank guide newbie modelers through the basics of data modeling and CA ERwin r8. Through the liberal use of illustrations, the inexperienced data modeler is graphically walked through the components of data models and how to create them in CA ERwin r8. As an experienced data modeler, Steve and Donna give me a handbook for effectively using the new and enhanced features of this release to bring my art form to life. The book delves into advanced modeling topics and techniques by continuing the liberal use of illustrations. It speaks to the importance of a defined data modeling architecture with soundly modeled data to assist the enterprise in understanding of the value of data. It guides me in applying the finishing touches to my data designs.

Enterprise Data Governance

Enterprise Data Governance
Author: Pierre Bonnet
Publsiher: John Wiley & Sons
Total Pages: 320
Release: 2013-03-04
ISBN 10: 1118622537
ISBN 13: 9781118622537
Language: EN, FR, DE, ES & NL

Enterprise Data Governance Book Review:

In an increasingly digital economy, mastering the quality of data is an increasingly vital yet still, in most organizations, a considerable task. The necessity of better governance and reinforcement of international rules and regulatory or oversight structures (Sarbanes Oxley, Basel II, Solvency II, IAS-IFRS, etc.) imposes on enterprises the need for greater transparency and better traceability of their data. All the stakeholders in a company have a role to play and great benefit to derive from the overall goals here, but will invariably turn towards their IT department in search of the answers. However, the majority of IT systems that have been developed within businesses are overly complex, badly adapted, and in many cases obsolete; these systems have often become a source of data or process fragility for the business. It is in this context that the management of ‘reference and master data’ or Master Data Management (MDM) and semantic modeling can intervene in order to straighten out the management of data in a forward-looking and sustainable manner. This book shows how company executives and IT managers can take these new challenges, as well as the advantages of using reference and master data management, into account in answering questions such as: Which data governance functions are available? How can IT be better aligned with business regulations? What is the return on investment? How can we assess intangible IT assets and data? What are the principles of semantic modeling? What is the MDM technical architecture? In these ways they will be better able to deliver on their responsibilities to their organizations, and position them for growth and robust data management and integrity in the future.

Mastering Data Warehouse Design

Mastering Data Warehouse Design
Author: Claudia Imhoff,Nicholas Galemmo,Jonathan G. Geiger
Publsiher: John Wiley & Sons
Total Pages: 456
Release: 2003-08-19
ISBN 10: 0471480924
ISBN 13: 9780471480921
Language: EN, FR, DE, ES & NL

Mastering Data Warehouse Design Book Review:

A cutting-edge response to Ralph Kimball's challenge to thedata warehouse community that answers some tough questions aboutthe effectiveness of the relational approach to datawarehousing Written by one of the best-known exponents of the Bill Inmonapproach to data warehousing Addresses head-on the tough issues raised by Kimball andexplains how to choose the best modeling technique for solvingcommon data warehouse design problems Weighs the pros and cons of relational vs. dimensional modelingtechniques Focuses on tough modeling problems, including creating andmaintaining keys and modeling calendars, hierarchies, transactions,and data quality

Mastering Data Warehouse Design

Mastering Data Warehouse Design
Author: Claudia Imhoff,Nicholas Galemmo,Jonathan G. Geiger
Publsiher: John Wiley & Sons
Total Pages: 456
Release: 2003-08-19
ISBN 10: 0471480924
ISBN 13: 9780471480921
Language: EN, FR, DE, ES & NL

Mastering Data Warehouse Design Book Review:

A cutting-edge response to Ralph Kimball's challenge to thedata warehouse community that answers some tough questions aboutthe effectiveness of the relational approach to datawarehousing Written by one of the best-known exponents of the Bill Inmonapproach to data warehousing Addresses head-on the tough issues raised by Kimball andexplains how to choose the best modeling technique for solvingcommon data warehouse design problems Weighs the pros and cons of relational vs. dimensional modelingtechniques Focuses on tough modeling problems, including creating andmaintaining keys and modeling calendars, hierarchies, transactions,and data quality

Mastering Data Warehouse Aggregates

Mastering Data Warehouse Aggregates
Author: Christopher Adamson
Publsiher: John Wiley & Sons
Total Pages: 384
Release: 2012-06-27
ISBN 10: 1118429184
ISBN 13: 9781118429181
Language: EN, FR, DE, ES & NL

Mastering Data Warehouse Aggregates Book Review:

This is the first book to provide in-depth coverage of star schema aggregates used in dimensional modeling-from selection and design, to loading and usage, to specific tasks and deliverables for implementation projects Covers the principles of aggregate schema design and the pros and cons of various types of commercial solutions for navigating and building aggregates Discusses how to include aggregates in data warehouse development projects that focus on incremental development, iterative builds, and early data loads

Cassandra Data Modeling and Analysis

Cassandra Data Modeling and Analysis
Author: C.Y. Kan
Publsiher: Packt Publishing Ltd
Total Pages: 196
Release: 2014-12-23
ISBN 10: 1783988894
ISBN 13: 9781783988891
Language: EN, FR, DE, ES & NL

Cassandra Data Modeling and Analysis Book Review:

If you are interested in Cassandra and want to develop real-world analysis applications, then this book is perfect for you. It would be helpful to have prior knowledge of NoSQL database.

Analyzing Data with Power BI and Power Pivot for Excel

Analyzing Data with Power BI and Power Pivot for Excel
Author: Alberto Ferrari,Marco Russo
Publsiher: Microsoft Press
Total Pages: 256
Release: 2017-04-28
ISBN 10: 1509302816
ISBN 13: 9781509302819
Language: EN, FR, DE, ES & NL

Analyzing Data with Power BI and Power Pivot for Excel Book Review:

Renowned DAX experts Alberto Ferrari and Marco Russo teach you how to design data models for maximum efficiency and effectiveness. How can you use Excel and Power BI to gain real insights into your information? As you examine your data, how do you write a formula that provides the numbers you need? The answers to both of these questions lie with the data model. This book introduces the basic techniques for shaping data models in Excel and Power BI. It’s meant for readers who are new to data modeling as well as for experienced data modelers looking for tips from the experts. If you want to use Power BI or Excel to analyze data, the many real-world examples in this book will help you look at your reports in a different way–like experienced data modelers do. As you’ll soon see, with the right data model, the correct answer is always a simple one! By reading this book, you will: • Gain an understanding of the basics of data modeling, including tables, relationships, and keys • Familiarize yourself with star schemas, snowflakes, and common modeling techniques • Learn the importance of granularity • Discover how to use multiple fact tables, like sales and purchases, in a complex data model • Manage calendar-related calculations by using date tables • Track historical attributes, like previous addresses of customers or manager assignments • Use snapshots to compute quantity on hand • Work with multiple currencies in the most efficient way • Analyze events that have durations, including overlapping durations • Learn what data model you need to answer your specific business questions About This Book • For Excel and Power BI users who want to exploit the full power of their favorite tools • For BI professionals seeking new ideas for modeling data

Data Modeling Made Simple

Data Modeling Made Simple
Author: Steve Hoberman
Publsiher: Technics Publications
Total Pages: 244
Release: 2015-12-29
ISBN 10: 163462016X
ISBN 13: 9781634620161
Language: EN, FR, DE, ES & NL

Data Modeling Made Simple Book Review:

Data Modeling Made Simple will provide the business or IT professional with a practical working knowledge of data modeling concepts and best practices. This book is written in a conversational style that encourages you to read it from start to finish and master these ten objectives: Know when a data model is needed and which type of data model is most effective for each situation Read a data model of any size and complexity with the same confidence as reading a book Build a fully normalized relational data model, as well as an easily navigatable dimensional model Apply techniques to turn a logical data model into an efficient physical design Leverage several templates to make requirements gathering more efficient and accurate Explain all ten categories of the Data Model Scorecard Learn strategies to improve your working relationships with others Appreciate the impact unstructured data has, and will have, on our data modeling deliverables Learn basic UML concepts Put data modeling in context with XML, metadata, and agile development Book Review by Johnny Gay In this book review, I address each section in the book and provide what I found most valuable as a data modeler. I compare, as I go, how the book's structure eases the new data modeler into the subject much like an instructor might ease a beginning swimmer into the pool. This book begins like a Dan Brown novel. It even starts out with the protagonist, our favorite data modeler, lost on a dark road somewhere in France. In this case, what saves him isn't a cipher, but of all things, something that's very much like a data model in the form of a map! The author deems they are both way-finding tools. The chapters in the book are divided into 5 sections. The chapters in each section end with an exercise and a list of the key points covered to reinforce what you've learned. I find myself comparing the teaching structure of the book to the way most of us learn to swim.

Smarter Modeling of IBM InfoSphere Master Data Management Solutions

Smarter Modeling of IBM InfoSphere Master Data Management Solutions
Author: Jan-Bernd Bracht,Joerg Rehr,Markus Siebert,Rouven Thimm,IBM Redbooks
Publsiher: IBM Redbooks
Total Pages: 596
Release: 2012-08-09
ISBN 10: 0738436801
ISBN 13: 9780738436807
Language: EN, FR, DE, ES & NL

Smarter Modeling of IBM InfoSphere Master Data Management Solutions Book Review:

This IBM® Redbooks® publication presents a development approach for master data management projects, and in particular, those projects based on IBM InfoSphere® MDM Server. The target audience for this book includes Enterprise Architects, Information, Integration and Solution Architects and Designers, Developers, and Product Managers. Master data management combines a set of processes and tools that defines and manages the non-transactional data entities of an organization. Master data management can provide processes for collecting, consolidating, persisting, and distributing this data throughout an organization. IBM InfoSphere Master Data Management Server creates trusted views of master data that can improve applications and business processes. You can use it to gain control over business information by managing and maintaining a complete and accurate view of master data. You also can use InfoSphere MDM Server to extract maximum value from master data by centralizing multiple data domains. InfoSphere MDM Server provides a comprehensive set of prebuilt business services that support a full range of master data management functionality.

Mastering QlikView Data Visualization

Mastering QlikView Data Visualization
Author: Karl Pover
Publsiher: Packt Publishing Ltd
Total Pages: 294
Release: 2016-04-25
ISBN 10: 1782173269
ISBN 13: 9781782173267
Language: EN, FR, DE, ES & NL

Mastering QlikView Data Visualization Book Review:

Take your QlikView skills to the next level and master the art of creating visual data analysis for real business needs About This Book Explore how to create your own QlikView data laboratory and how to develop QlikView applications using agile project methods Implement advanced data visualization and analysis for common business requirements from the sales, finance, marketing, inventory, operations, and human resources departments Learn from real-life experience shared in this book that will give you the upper hand in your next QlikView project Who This Book Is For This book is intended for developers who want to go beyond their technical knowledge of QlikView and understand how to create analysis and data visualizations that solve real business needs. You should have a basic understanding of advanced QlikView functions. What You Will Learn Apply advanced QlikView techniques such as set analysis and nested aggregation in order to deliver common business requirements Understand real business requirements for sales, finance, marketing, and human resources departments Discover when to apply more advanced data visualization such as frequency polygons, bullet graphs, and XmR charts Go beyond native QlikView and include geographical analysis, planning, and sentiment analysis in your QlikView application Troubleshoot common errors we discover at the moment we visualize data in QlikView Develop a plan to master Qlik Sense data visualization In Detail Just because you know how to swing a hammer doesn't mean you know how to build a house. Now that you've learned how to use QlikView, it's time to learn how to develop meaningful QlikView applications that deliver what your business users need. You will explore the requirements and the data from several business departments in order to deliver the most amazing analysis and data visualizations. In doing so, you will practice using advanced QlikView functions, chart object property options, and extensions to solve real-world challenges. Style and approach This hands-on guide follows the story of a company implementing QlikView as its enterprise data discovery solution. Each chapter starts with an understanding of the business requirements and the data model, and then helps you create insightful analysis and data visualizations. Each chapter expands on what was done in the previous chapter as we follow this continuously improving iterative process.

Mastering Entity Framework

Mastering Entity Framework
Author: Rahul Rajat Singh
Publsiher: Packt Publishing Ltd
Total Pages: 304
Release: 2015-02-24
ISBN 10: 1784392863
ISBN 13: 9781784392864
Language: EN, FR, DE, ES & NL

Mastering Entity Framework Book Review:

This book is for .NET developers who are developing data-driven applications using ADO.NET or other data access technologies. This book is going to give you everything you need to effectively develop and manage data-driven applications using Entity Framework.

Data Modeling Essentials

Data Modeling Essentials
Author: Graeme Simsion,Graham Witt
Publsiher: Elsevier
Total Pages: 560
Release: 2004-12-03
ISBN 10: 9780080488677
ISBN 13: 0080488676
Language: EN, FR, DE, ES & NL

Data Modeling Essentials Book Review:

Data Modeling Essentials, Third Edition, covers the basics of data modeling while focusing on developing a facility in techniques, rather than a simple familiarization with "the rules". In order to enable students to apply the basics of data modeling to real models, the book addresses the realities of developing systems in real-world situations by assessing the merits of a variety of possible solutions as well as using language and diagramming methods that represent industry practice. This revised edition has been given significantly expanded coverage and reorganized for greater reader comprehension even as it retains its distinctive hallmarks of readability and usefulness. Beginning with the basics, the book provides a thorough grounding in theory before guiding the reader through the various stages of applied data modeling and database design. Later chapters address advanced subjects, including business rules, data warehousing, enterprise-wide modeling and data management. It includes an entirely new section discussing the development of logical and physical modeling, along with new material describing a powerful technique for model verification. It also provides an excellent resource for additional lectures and exercises. This text is the ideal reference for data modelers, data architects, database designers, DBAs, and systems analysts, as well as undergraduate and graduate-level students looking for a real-world perspective. Thorough coverage of the fundamentals and relevant theory. Recognition and support for the creative side of the process. Expanded coverage of applied data modeling includes new chapters on logical and physical database design. New material describing a powerful technique for model verification. Unique coverage of the practical and human aspects of modeling, such as working with business specialists, managing change, and resolving conflict.

Python for Finance

Python for Finance
Author: Yves Hilpisch
Publsiher: "O'Reilly Media, Inc."
Total Pages: 720
Release: 2018-12-05
ISBN 10: 1492024295
ISBN 13: 9781492024293
Language: EN, FR, DE, ES & NL

Python for Finance Book Review:

The financial industry has recently adopted Python at a tremendous rate, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. Updated for Python 3, the second edition of this hands-on book helps you get started with the language, guiding developers and quantitative analysts through Python libraries and tools for building financial applications and interactive financial analytics. Using practical examples throughout the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks.

Mastering Spark with R

Mastering Spark with R
Author: Javier Luraschi,Kevin Kuo,Edgar Ruiz
Publsiher: "O'Reilly Media, Inc."
Total Pages: 296
Release: 2019-10-07
ISBN 10: 1492046329
ISBN 13: 9781492046325
Language: EN, FR, DE, ES & NL

Mastering Spark with R Book Review:

If you’re like most R users, you have deep knowledge and love for statistics. But as your organization continues to collect huge amounts of data, adding tools such as Apache Spark makes a lot of sense. With this practical book, data scientists and professionals working with large-scale data applications will learn how to use Spark from R to tackle big data and big compute problems. Authors Javier Luraschi, Kevin Kuo, and Edgar Ruiz show you how to use R with Spark to solve different data analysis problems. This book covers relevant data science topics, cluster computing, and issues that should interest even the most advanced users. Analyze, explore, transform, and visualize data in Apache Spark with R Create statistical models to extract information and predict outcomes; automate the process in production-ready workflows Perform analysis and modeling across many machines using distributed computing techniques Use large-scale data from multiple sources and different formats with ease from within Spark Learn about alternative modeling frameworks for graph processing, geospatial analysis, and genomics at scale Dive into advanced topics including custom transformations, real-time data processing, and creating custom Spark extensions

Data Model Patterns

Data Model Patterns
Author: David Hay
Publsiher: Addison-Wesley
Total Pages: 288
Release: 2013-07-18
ISBN 10: 0133488624
ISBN 13: 9780133488623
Language: EN, FR, DE, ES & NL

Data Model Patterns Book Review:

This is the digital version of the printed book (Copyright © 1996). Learning the basics of a modeling technique is not the same as learning how to use and apply it. To develop a data model of an organization is to gain insights into its nature that do not come easily. Indeed, analysts are often expected to understand subtleties of an organization's structure that may have evaded people who have worked there for years. Here's help for those analysts who have learned the basics of data modeling (or "entity/relationship modeling") but who need to obtain the insights required to prepare a good model of a real business. Structures common to many types of business are analyzed in areas such as accounting, material requirements planning, process manufacturing, contracts, laboratories, and documents. In each chapter, high-level data models are drawn from the following business areas: The Enterprise and Its World The Things of the Enterprise Procedures and Activities Contracts Accounting The Laboratory Material Requirements Planning Process Manufacturing Documents Lower-Level Conventions

Mastering Python Data Analysis

Mastering Python Data Analysis
Author: Magnus Vilhelm Persson,Luiz Felipe Martins
Publsiher: Packt Publishing Ltd
Total Pages: 284
Release: 2016-06-27
ISBN 10: 1783553308
ISBN 13: 9781783553303
Language: EN, FR, DE, ES & NL

Mastering Python Data Analysis Book Review:

Become an expert at using Python for advanced statistical analysis of data using real-world examples About This Book Clean, format, and explore data using graphical and numerical summaries Leverage the IPython environment to efficiently analyze data with Python Packed with easy-to-follow examples to develop advanced computational skills for the analysis of complex data Who This Book Is For If you are a competent Python developer who wants to take your data analysis skills to the next level by solving complex problems, then this advanced guide is for you. Familiarity with the basics of applying Python libraries to data sets is assumed. What You Will Learn Read, sort, and map various data into Python and Pandas Recognise patterns so you can understand and explore data Use statistical models to discover patterns in data Review classical statistical inference using Python, Pandas, and SciPy Detect similarities and differences in data with clustering Clean your data to make it useful Work in Jupyter Notebook to produce publication ready figures to be included in reports In Detail Python, a multi-paradigm programming language, has become the language of choice for data scientists for data analysis, visualization, and machine learning. Ever imagined how to become an expert at effectively approaching data analysis problems, solving them, and extracting all of the available information from your data? Well, look no further, this is the book you want! Through this comprehensive guide, you will explore data and present results and conclusions from statistical analysis in a meaningful way. You'll be able to quickly and accurately perform the hands-on sorting, reduction, and subsequent analysis, and fully appreciate how data analysis methods can support business decision-making. You'll start off by learning about the tools available for data analysis in Python and will then explore the statistical models that are used to identify patterns in data. Gradually, you'll move on to review statistical inference using Python, Pandas, and SciPy. After that, we'll focus on performing regression using computational tools and you'll get to understand the problem of identifying clusters in data in an algorithmic way. Finally, we delve into advanced techniques to quantify cause and effect using Bayesian methods and you'll discover how to use Python's tools for supervised machine learning. Style and approach This book takes a step-by-step approach to reading, processing, and analyzing data in Python using various methods and tools. Rich in examples, each topic connects to real-world examples and retrieves data directly online where possible. With this book, you are given the knowledge and tools to explore any data on your own, encouraging a curiosity befitting all data scientists.

Data Modeling for the Business

Data Modeling for the Business
Author: Steve Hoberman,Donna Burbank,Chris Bradley
Publsiher: Technics Publications
Total Pages: 288
Release: 2009-04-01
ISBN 10: 1634620437
ISBN 13: 9781634620437
Language: EN, FR, DE, ES & NL

Data Modeling for the Business Book Review:

Did you ever try getting Businesspeople and IT to agree on the project scope for a new application? Or try getting Marketing and Sales to agree on the target audience? Or try bringing new team members up to speed on the hundreds of tables in your data warehouse — without them dozing off? Whether you are a businessperson or an IT professional, you can be the hero in each of these and hundreds of other scenarios by building a High-Level Data Model. The High-Level Data Model is a simplified view of our complex environment. It can be a powerful communication tool of the key concepts within our application development projects, business intelligence and master data management programs, and all enterprise and industry initiatives. Learn about the High-Level Data Model and master the techniques for building one, including a comprehensive ten-step approach and hands-on exercises to help you practice topics on your own. In this book, we review data modeling basics and explain why the core concepts stored in a high-level data model can have significant business impact on an organization. We explain the technical notation used for a data model and walk through some simple examples of building a high-level data model. We also describe how data models relate to other key initiatives you may have heard of or may be implementing in your organization. This book contains best practices for implementing a high-level data model, along with some easy-to-use templates and guidelines for a step-by-step approach. Each step will be illustrated using many examples based on actual projects we have worked on. Names have been changed to protect the innocent, but the pain points and lessons have been preserved. One example spans an entire chapter and will allow you to practice building a high-level data model from beginning to end, and then compare your results to ours. Building a high-level data model following the ten step approach you’ll read about is a great way to ensure you will retain the new skills you learn in this book. As is the case in many disciplines, using the right tool for the right job is critical to the overall success of your high-level data model implementation. To help you in your tool selection process, there are several chapters dedicated to discussing what to look for in a high-level data modeling tool and a framework for choosing a data modeling tool, in general. This book concludes with a real-world case study that shows how an international energy company successfully used a high-level data model to streamline their information management practices and increase communication throughout the organization—between both businesspeople and IT. Data modeling is one of the under-exploited, and potentially very valuable, business capabilities that are often hidden away in an organization’s Information Technology department. Data Modeling for the Business highlights both the resulting damage to business value, and the opportunities to make things better. As an easy-to follow and comprehensive guide on the ‘why’ and ‘how’ of data modeling, it also reminds us that a successful strategy for exploiting IT depends at least as much on the information as the technology. Chris Potts, Corporate IT Strategist and Author of fruITion: Creating the Ultimate Corporate Strategy for Information Technology One of the most critical systems issues is aligning business with IT and fulfilling business needs using data models. The authors of Data Modeling for the Business do a masterful job at simply and clearly describing the art of using data models to communicate with business representatives and meet business needs. The book provides many valuable tools, analogies, and step-by-step methods for effective data modeling and is an important contribution in bridging the much needed connection between data modeling and realizing business requirements. Len Silverston, author of The Data Model Resource Book series

Master Data Management

Master Data Management
Author: David Loshin
Publsiher: Morgan Kaufmann
Total Pages: 304
Release: 2010-07-28
ISBN 10: 9780080921211
ISBN 13: 0080921213
Language: EN, FR, DE, ES & NL

Master Data Management Book Review:

The key to a successful MDM initiative isn’t technology or methods, it’s people: the stakeholders in the organization and their complex ownership of the data that the initiative will affect. Master Data Management equips you with a deeply practical, business-focused way of thinking about MDM—an understanding that will greatly enhance your ability to communicate with stakeholders and win their support. Moreover, it will help you deserve their support: you’ll master all the details involved in planning and executing an MDM project that leads to measurable improvements in business productivity and effectiveness. * Presents a comprehensive roadmap that you can adapt to any MDM project. * Emphasizes the critical goal of maintaining and improving data quality. * Provides guidelines for determining which data to “master. * Examines special issues relating to master data metadata. * Considers a range of MDM architectural styles. * Covers the synchronization of master data across the application infrastructure.