Demystifying Big Data Machine Learning and Deep Learning for Healthcare Analytics

Demystifying Big Data  Machine Learning  and Deep Learning for Healthcare Analytics
Author: Pradeep N,Sandeep Kautish,Sheng-Lung Peng
Publsiher: Academic Press
Total Pages: 372
Release: 2021-06-25
ISBN 10: 0128220449
ISBN 13: 9780128220443
Language: EN, FR, DE, ES & NL

Demystifying Big Data Machine Learning and Deep Learning for Healthcare Analytics Book Review:

Demystifying Big Data, Machine Learning, and Deep Learning for Healthcare Analytics presents the changing world of data utilization, especially in clinical healthcare. Various techniques, methodologies, and algorithms are presented in this book to organize data in a structured manner that will assist physicians in the care of patients and help biomedical engineers and computer scientists understand the impact of these techniques on healthcare analytics. The book is divided into two parts: Part 1 covers big data aspects such as healthcare decision support systems and analytics-related topics. Part 2 focuses on the current frameworks and applications of deep learning and machine learning, and provides an outlook on future directions of research and development. The entire book takes a case study approach, providing a wealth of real-world case studies in the application chapters to act as a foundational reference for biomedical engineers, computer scientists, healthcare researchers, and clinicians. Provides a comprehensive reference for biomedical engineers, computer scientists, advanced industry practitioners, researchers, and clinicians to understand and develop healthcare analytics using advanced tools and technologies Includes in-depth illustrations of advanced techniques via dataset samples, statistical tables, and graphs with algorithms and computational methods for developing new applications in healthcare informatics Unique case study approach provides readers with insights for practical clinical implementation

Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications

Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications
Author: Om Prakash Jena,Bharat Bhushan,Utku Kose
Publsiher: CRC Press
Total Pages: 280
Release: 2022
ISBN 10: 9781003226147
ISBN 13: 1003226140
Language: EN, FR, DE, ES & NL

Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications Book Review:

Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications introduces and explores a variety of schemes designed to empower, enhance, and represent multi-institutional and multi-disciplinary machine learning (ML) and deep learning (DL) research in healthcare paradigms. Serving as a unique compendium of existing and emerging ML/DL paradigms for the healthcare sector, this book demonstrates the depth, breadth, complexity, and diversity of this multi-disciplinary area. It provides a comprehensive overview of ML/DL algorithms and explores the related use cases in enterprises such as computer-aided medical diagnostics, drug discovery and development, medical imaging, automation, robotic surgery, electronic smart records creation, outbreak prediction, medical image analysis, and radiation treatments. This book aims to endow different communities with the innovative advances in theory, analytical results, case studies, numerical simulation, modeling, and computational structuring in the field of ML/DL models for healthcare applications. It will reveal different dimensions of ML/DL applications and will illustrate their use in the solution of assorted real-world biomedical and healthcare problems. Features: Covers the fundamentals of ML and DL in the context of healthcare applications Discusses various data collection approaches from various sources and how to use them in ML/DL models Integrates several aspects of AI-based computational intelligence such as ML and DL from diversified perspectives which describe recent research trends and advanced topics in the field Explores the current and future impacts of pandemics and risk mitigation in healthcare with advanced analytics Emphasizes feature selection as an important step in any accurate model simulation where ML/DL methods are used to help train the system and extract the positive solution implicitly This book is a valuable source of information for researchers, scientists, healthcare professionals, programmers, and graduate-level students interested in understanding the applications of ML/DL in healthcare scenarios. Dr. Om Prakash Jena is an Assistant Professor in the Department of Computer Science, Ravenshaw University, Cuttack, Odisha, India. Dr. Bharat Bhushan is an Assistant Professor of Department of Computer Science and Engineering (CSE) at the School of Engineering and Technology, Sharda University, Greater Noida, India. Dr. Utku Kose is an Associate Professor in Suleyman Demirel University, Turkey.

Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications

Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications
Author: Om Prakash Jena,Bharat Bhushan,Utku Kose
Publsiher: CRC Press
Total Pages: 292
Release: 2022-02-25
ISBN 10: 1000533972
ISBN 13: 9781000533972
Language: EN, FR, DE, ES & NL

Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications Book Review:

Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications introduces and explores a variety of schemes designed to empower, enhance, and represent multi-institutional and multi-disciplinary machine learning (ML) and deep learning (DL) research in healthcare paradigms. Serving as a unique compendium of existing and emerging ML/DL paradigms for the healthcare sector, this book demonstrates the depth, breadth, complexity, and diversity of this multi-disciplinary area. It provides a comprehensive overview of ML/DL algorithms and explores the related use cases in enterprises such as computer-aided medical diagnostics, drug discovery and development, medical imaging, automation, robotic surgery, electronic smart records creation, outbreak prediction, medical image analysis, and radiation treatments. This book aims to endow different communities with the innovative advances in theory, analytical results, case studies, numerical simulation, modeling, and computational structuring in the field of ML/DL models for healthcare applications. It will reveal different dimensions of ML/DL applications and will illustrate their use in the solution of assorted real-world biomedical and healthcare problems. Features: Covers the fundamentals of ML and DL in the context of healthcare applications Discusses various data collection approaches from various sources and how to use them in ML/DL models Integrates several aspects of AI-based computational intelligence such as ML and DL from diversified perspectives which describe recent research trends and advanced topics in the field Explores the current and future impacts of pandemics and risk mitigation in healthcare with advanced analytics Emphasizes feature selection as an important step in any accurate model simulation where ML/DL methods are used to help train the system and extract the positive solution implicitly This book is a valuable source of information for researchers, scientists, healthcare professionals, programmers, and graduate-level students interested in understanding the applications of ML/DL in healthcare scenarios. Dr. Om Prakash Jena is an Assistant Professor in the Department of Computer Science, Ravenshaw University, Cuttack, Odisha, India. Dr. Bharat Bhushan is an Assistant Professor of Department of Computer Science and Engineering (CSE) at the School of Engineering and Technology, Sharda University, Greater Noida, India. Dr. Utku Kose is an Associate Professor in Suleyman Demirel University, Turkey.

Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications

Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications
Author: Om Prakash Jena,Bharat Bhushan,Utku Kose
Publsiher: CRC Press
Total Pages: 280
Release: 2022
ISBN 10: 9781032126876
ISBN 13: 1032126876
Language: EN, FR, DE, ES & NL

Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications Book Review:

This book introduces and explores a variety of schemes designed to empower, enhance, and represent multi-institutional and multi-disciplinary ML/DL research in healthcare paradigms. Serving as a unique compendium of existing and emerging ML/DL paradigms for healthcare sector, it depth, breadth, complexity, and diversity of this multi-disciplinary area. This book provides a comprehensive overview of Machine Learning (ML) and Deep Learning (DL) algorithms and explores the related use cases in enterprises such as computer aided medical diagnostics, drug discovery and development, medical imaging, automation, robotic surgery, electronic smart records creation, outbreak prediction, medical image analysis, and radiation treatments. The book aims to endow different communities with their innovative advances in theory, analytical results, case studies, numerical simulation, modelling, and computational structuring in the field of ML/DL models for healthcare applications. This book will reveal different dimensions of ML/DL applications and will illustrate its use in the solution of assorted real world biomedical and healthcare problems. This book is a valuable source for information for researchers, scientists, healthcare professional, programmers and graduate-level students interested in understanding the applications of ML/DL in healthcare scenarios.

Artificial Intelligence in Healthcare

Artificial Intelligence in Healthcare
Author: Adam Bohr,Kaveh Memarzadeh
Publsiher: Academic Press
Total Pages: 378
Release: 2020-06-21
ISBN 10: 0128184396
ISBN 13: 9780128184394
Language: EN, FR, DE, ES & NL

Artificial Intelligence in Healthcare Book Review:

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. Highlights different data techniques in healthcare data analysis, including machine learning and data mining Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks Includes applications and case studies across all areas of AI in healthcare data

Machine Learning and Deep Learning in Efficacy Improvement of Healthcare Systems

Machine Learning and Deep Learning in Efficacy Improvement of Healthcare Systems
Author: Om Prakash Jena,Bharat Bhushan,Nitin Rakesh,Parma Nand Astya,Yousef Farhaoui
Publsiher: Emerging Trends in Biomedical Technologies and Health informatics
Total Pages: 400
Release: 2022
ISBN 10: 9781032036724
ISBN 13: 1032036729
Language: EN, FR, DE, ES & NL

Machine Learning and Deep Learning in Efficacy Improvement of Healthcare Systems Book Review:

This book describes the fundamental concepts of machine learning and deep learning techniques in a healthcare system. The aim of this book is to describe how deep learning methods are used to insure high quality data processing, medical image and signal analysis, and improved healthcare application.

Knowledge Modelling and Big Data Analytics in Healthcare

Knowledge Modelling and Big Data Analytics in Healthcare
Author: Mayuri Mehta,Kalpdrum Passi,Indranath Chatterjee,Rajan Patel
Publsiher: CRC Press
Total Pages: 362
Release: 2021-12-09
ISBN 10: 1000477762
ISBN 13: 9781000477764
Language: EN, FR, DE, ES & NL

Knowledge Modelling and Big Data Analytics in Healthcare Book Review:

Knowledge Modelling and Big Data Analytics in Healthcare: Advances and Applications focuses on automated analytical techniques for healthcare applications used to extract knowledge from a vast amount of data. It brings together a variety of different aspects of the healthcare system and aids in the decision-making processes for healthcare professionals. The editors connect four contemporary areas of research rarely brought together in one book: artificial intelligence, big data analytics, knowledge modelling, and healthcare. They present state-of-the-art research from the healthcare sector, including research on medical imaging, healthcare analysis, and the applications of artificial intelligence in drug discovery. This book is intended for data scientists, academicians, and industry professionals in the healthcare sector.

Machine Learning and Analytics in Healthcare Systems

Machine Learning and Analytics in Healthcare Systems
Author: Himani Bansal,Balamurugan Balusamy,T. Poongodi,Firoz Khan KP
Publsiher: CRC Press
Total Pages: 274
Release: 2021-07-01
ISBN 10: 1000406199
ISBN 13: 9781000406191
Language: EN, FR, DE, ES & NL

Machine Learning and Analytics in Healthcare Systems Book Review:

This book provides applications of machine learning in healthcare systems and seeks to close the gap between engineering and medicine. It will combine the design and problem-solving skills of engineering with health sciences, in order to advance healthcare treatment. The book will include areas such as diagnosis, monitoring, and therapy. The book will provide real-world case studies, gives a detailed exploration of applications in healthcare systems, offers multiple perspectives on a variety of disciplines, while also letting the reader know how to avoid some of the consequences of old methods with data sharing. The book can be used as a reference for practitioners, researchers and for students at basic and intermediary levels in Computer Science, Electronics and Communications.

Deep Learning in Healthcare

Deep Learning in Healthcare
Author: Yen-Wei Chen,Lakhmi C. Jain
Publsiher: Springer Nature
Total Pages: 218
Release: 2019-11-18
ISBN 10: 3030326063
ISBN 13: 9783030326067
Language: EN, FR, DE, ES & NL

Deep Learning in Healthcare Book Review:

This book provides a comprehensive overview of deep learning (DL) in medical and healthcare applications, including the fundamentals and current advances in medical image analysis, state-of-the-art DL methods for medical image analysis and real-world, deep learning-based clinical computer-aided diagnosis systems. Deep learning (DL) is one of the key techniques of artificial intelligence (AI) and today plays an important role in numerous academic and industrial areas. DL involves using a neural network with many layers (deep structure) between input and output, and its main advantage of is that it can automatically learn data-driven, highly representative and hierarchical features and perform feature extraction and classification on one network. DL can be used to model or simulate an intelligent system or process using annotated training data. Recently, DL has become widely used in medical applications, such as anatomic modelling, tumour detection, disease classification, computer-aided diagnosis and surgical planning. This book is intended for computer science and engineering students and researchers, medical professionals and anyone interested using DL techniques.

Big Data and Artificial Intelligence for Healthcare Applications

Big Data and Artificial Intelligence for Healthcare Applications
Author: Ankur Saxena,Nicolas Brault,Shazia Rashid
Publsiher: CRC Press
Total Pages: 286
Release: 2021-06-15
ISBN 10: 1000387313
ISBN 13: 9781000387315
Language: EN, FR, DE, ES & NL

Big Data and Artificial Intelligence for Healthcare Applications Book Review:

This book covers a wide range of topics on the role of Artificial Intelligence, Machine Learning, and Big Data for healthcare applications and deals with the ethical issues and concerns associated with it. This book explores the applications in different areas of healthcare and highlights the current research. "Big Data and Artificial Intelligence for Healthcare Applications" covers healthcare big data analytics, mobile health and personalized medicine, clinical trial data management and presents how Artificial Intelligence can be used for early disease diagnosis prediction and prognosis. It also offers some case studies that describes the application of Artificial Intelligence and Machine Learning in healthcare. Researchers, healthcare professionals, data scientists, systems engineers, students, programmers, clinicians, and policymakers will find this book of interest.

Machine Learning and the Internet of Medical Things in Healthcare

Machine Learning and the Internet of Medical Things in Healthcare
Author: Krishna Kant Singh,Mohamed Elhoseny,Akansha Singh,Ahmed A. Elngar
Publsiher: Academic Press
Total Pages: 290
Release: 2021-04-26
ISBN 10: 012823217X
ISBN 13: 9780128232170
Language: EN, FR, DE, ES & NL

Machine Learning and the Internet of Medical Things in Healthcare Book Review:

Machine Learning and the Internet of Medical Things in Healthcare discusses the applications and challenges of machine learning for healthcare applications. The book provides a platform for presenting machine learning-enabled healthcare techniques and offers a mathematical and conceptual background of the latest technology. It describes machine learning techniques along with the emerging platform of the Internet of Medical Things used by practitioners and researchers worldwide. The book includes deep feed forward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology. It also presents the concepts of the Internet of Things, the set of technologies that develops traditional devices into smart devices. Finally, the book offers research perspectives, covering the convergence of machine learning and IoT. It also presents the application of these technologies in the development of healthcare frameworks. Provides an introduction to the Internet of Medical Things through the principles and applications of machine learning Explains the functions and applications of machine learning in various applications such as ultrasound imaging, biomedical signal processing, robotics, and biomechatronics Includes coverage of the evolution of healthcare applications with machine learning, including Clinical Decision Support Systems, artificial intelligence in biomedical engineering, and AI-enabled connected health informatics, supported by real-world case studies

Deep Learning Machine Learning and IoT in Biomedical and Health Informatics

Deep Learning  Machine Learning and IoT in Biomedical and Health Informatics
Author: Sujata Dash,Subhendu Kumar Pani,Joel J. P. C. Rodrigues,Babita Majhi
Publsiher: CRC Press
Total Pages: 382
Release: 2022-02-11
ISBN 10: 1000534057
ISBN 13: 9781000534054
Language: EN, FR, DE, ES & NL

Deep Learning Machine Learning and IoT in Biomedical and Health Informatics Book Review:

Biomedical and Health Informatics is an important field that brings tremendous opportunities and helps address challenges due to an abundance of available biomedical data. This book examines and demonstrates state-of-the-art approaches for IoT and Machine Learning based biomedical and health related applications. This book aims to provide computational methods for accumulating, updating and changing knowledge in intelligent systems and particularly learning mechanisms that help us to induce knowledge from the data. It is helpful in cases where direct algorithmic solutions are unavailable, there is lack of formal models, or the knowledge about the application domain is inadequately defined. In the future IoT has the impending capability to change the way we work and live. These computing methods also play a significant role in design and optimization in diverse engineering disciplines. With the influence and the development of the IoT concept, the need for AI (artificial intelligence) techniques has become more significant than ever. The aim of these techniques is to accept imprecision, uncertainties and approximations to get a rapid solution. However, recent advancements in representation of intelligent IoTsystems generate a more intelligent and robust system providing a human interpretable, low-cost, and approximate solution. Intelligent IoT systems have demonstrated great performance to a variety of areas including big data analytics, time series, biomedical and health informatics. This book will be very beneficial for the new researchers and practitioners working in the biomedical and healthcare fields to quickly know the best performing methods. It will also be suitable for a wide range of readers who may not be scientists but who are also interested in the practice of such areas as medical image retrieval, brain image segmentation, among others. • Discusses deep learning, IoT, machine learning, and biomedical data analysis with broad coverage of basic scientific applications • Presents deep learning and the tremendous improvement in accuracy, robustness, and cross- language generalizability it has over conventional approaches • Discusses various techniques of IoT systems for healthcare data analytics • Provides state-of-the-art methods of deep learning, machine learning and IoT in biomedical and health informatics • Focuses more on the application of algorithms in various real life biomedical and engineering problems

Machine Learning for Healthcare Applications

Machine Learning for Healthcare Applications
Author: Sachi Nandan Mohanty,G. Nalinipriya,Om Prakash Jena,Achyuth Sarkar
Publsiher: John Wiley & Sons
Total Pages: 416
Release: 2021-04-13
ISBN 10: 1119791812
ISBN 13: 9781119791812
Language: EN, FR, DE, ES & NL

Machine Learning for Healthcare Applications Book Review:

When considering the idea of using machine learning in healthcare, it is a Herculean task to present the entire gamut of information in the field of intelligent systems. It is, therefore the objective of this book to keep the presentation narrow and intensive. This approach is distinct from others in that it presents detailed computer simulations for all models presented with explanations of the program code. It includes unique and distinctive chapters on disease diagnosis, telemedicine, medical imaging, smart health monitoring, social media healthcare, and machine learning for COVID-19. These chapters help develop a clear understanding of the working of an algorithm while strengthening logical thinking. In this environment, answering a single question may require accessing several data sources and calling on sophisticated analysis tools. While data integration is a dynamic research area in the database community, the specific needs of research have led to the development of numerous middleware systems that provide seamless data access in a result-driven environment. Since this book is intended to be useful to a wide audience, students, researchers and scientists from both academia and industry may all benefit from this material. It contains a comprehensive description of issues for healthcare data management and an overview of existing systems, making it appropriate for introductory and instructional purposes. Prerequisites are minimal; the readers are expected to have basic knowledge of machine learning. This book is divided into 22 real-time innovative chapters which provide a variety of application examples in different domains. These chapters illustrate why traditional approaches often fail to meet customers’ needs. The presented approaches provide a comprehensive overview of current technology. Each of these chapters, which are written by the main inventors of the presented systems, specifies requirements and provides a description of both the chosen approach and its implementation. Because of the self-contained nature of these chapters, they may be read in any order. Each of the chapters use various technical terms which involve expertise in machine learning and computer science.

Artificial Intelligence and Big Data Analytics for Smart Healthcare

Artificial Intelligence and Big Data Analytics for Smart Healthcare
Author: Miltiadis Lytras,Akila Sarirete,Anna Visvizi,Kwok Tai Chui
Publsiher: Academic Press
Total Pages: 290
Release: 2021-10-22
ISBN 10: 0128220627
ISBN 13: 9780128220627
Language: EN, FR, DE, ES & NL

Artificial Intelligence and Big Data Analytics for Smart Healthcare Book Review:

Artificial Intelligence and Big Data Analytics for Smart Healthcare serves as a key reference for practitioners and experts involved in healthcare as they strive to enhance the value added of healthcare and develop more sustainable healthcare systems. It brings together insights from emerging sophisticated information and communication technologies such as big data analytics, artificial intelligence, machine learning, data science, medical intelligence, and, by dwelling on their current and prospective applications, highlights managerial and policymaking challenges they may generate. The book is split into five sections: big data infrastructure, framework and design for smart healthcare; signal processing techniques for smart healthcare applications; business analytics (descriptive, diagnostic, predictive and prescriptive) for smart healthcare; emerging tools and techniques for smart healthcare; and challenges (security, privacy, and policy) in big data for smart healthcare. The content is carefully developed to be understandable to different members of healthcare chain to leverage collaborations with researchers and industry. Presents a holistic discussion on the new landscape of data driven medical technologies including Big Data, Analytics, Artificial Intelligence, Machine Learning, and Precision Medicine Discusses such technologies with case study driven approach with reference to real world application and systems, to make easier the understanding to the reader not familiar with them Encompasses an international collaboration perspective, providing understandable knowledge to professionals involved with healthcare to leverage productive partnerships with technology developers

Applications of Big Data in Healthcare

Applications of Big Data in Healthcare
Author: Ashish Khanna,Deepak Gupta,Nilanjan Dey
Publsiher: Academic Press
Total Pages: 310
Release: 2021-03-10
ISBN 10: 0128204516
ISBN 13: 9780128204511
Language: EN, FR, DE, ES & NL

Applications of Big Data in Healthcare Book Review:

Applications of Big Data in Healthcare: Theory and Practice begins with the basics of Big Data analysis and introduces the tools, processes and procedures associated with Big Data analytics. The book unites healthcare with Big Data analysis and uses the advantages of the latter to solve the problems faced by the former. The authors present the challenges faced by the healthcare industry, including capturing, storing, searching, sharing and analyzing data. This book illustrates the challenges in the applications of Big Data and suggests ways to overcome them, with a primary emphasis on data repositories, challenges, and concepts for data scientists, engineers and clinicians. The applications of Big Data have grown tremendously within the past few years and its growth can not only be attributed to its competence to handle large data streams but also to its abilities to find insights from complex, noisy, heterogeneous, longitudinal and voluminous data. The main objectives of Big Data in the healthcare sector is to come up with ways to provide personalized healthcare to patients by taking into account the enormous amounts of already existing data. Provides case studies that illustrate the business processes underlying the use of big data and deep learning health analytics to improve health care delivery Supplies readers with a foundation for further specialized study in clinical analysis and data management Includes links to websites, videos, articles and other online content to expand and support the primary learning objectives for each major section of the book

Machine Learning and Deep Learning in Efficacy Improvement of Healthcare Systems

Machine Learning and Deep Learning in Efficacy Improvement of Healthcare Systems
Author: Om Prakash Jena,Bharat Bhushan,Nitin Rakesh,Parma Nand Astya,Yousef Farhaoui
Publsiher: CRC Press
Total Pages: 395
Release: 2022-05-19
ISBN 10: 1000486826
ISBN 13: 9781000486827
Language: EN, FR, DE, ES & NL

Machine Learning and Deep Learning in Efficacy Improvement of Healthcare Systems Book Review:

The goal of medical informatics is to improve life expectancy, disease diagnosis and quality of life. Medical devices have revolutionized healthcare and have led to the modern age of machine learning, deep learning and Internet of Medical Things (IoMT) with their proliferation, mobility and agility. This book exposes different dimensions of applications for computational intelligence and explains its use in solving various biomedical and healthcare problems in the real world. This book describes the fundamental concepts of machine learning and deep learning techniques in a healthcare system. The aim of this book is to describe how deep learning methods are used to ensure high-quality data processing, medical image and signal analysis and improved healthcare applications. This book also explores different dimensions of computational intelligence applications and illustrates its use in the solution of assorted real-world biomedical and healthcare problems. Furthermore, it provides the healthcare sector with innovative advances in theory, analytical approaches, numerical simulation, statistical analysis, modelling, advanced deployment, case studies, analytical results, computational structuring and significant progress in the field of machine learning and deep learning in healthcare applications. FEATURES Explores different dimensions of computational intelligence applications and illustrates its use in the solution of assorted real-world biomedical and healthcare problems Provides guidance in developing intelligence-based diagnostic systems, efficient models and cost-effective machines Provides the latest research findings, solutions to the concerning issues and relevant theoretical frameworks in the area of machine learning and deep learning for healthcare systems Describes experiences and findings relating to protocol design, prototyping, experimental evaluation, real testbeds and empirical characterization of security and privacy interoperability issues in healthcare applications Explores and illustrates the current and future impacts of pandemics and mitigates risk in healthcare with advanced analytics This book is intended for students, researchers, professionals and policy makers working in the fields of public health and in the healthcare sector. Scientists and IT specialists will also find this book beneficial for research exposure and new ideas in the field of machine learning and deep learning.

Machine Learning Approaches and Applications in Applied Intelligence for Healthcare Data Analytics

Machine Learning Approaches and Applications in Applied Intelligence for Healthcare Data Analytics
Author: Abhishek Kumar,Anavatti G. Sreenatha,Ashutosh Kumar Dubey,Pramod Singh Rathore
Publsiher: CRC Press
Total Pages: 224
Release: 2022
ISBN 10: 9781003132110
ISBN 13: 1003132111
Language: EN, FR, DE, ES & NL

Machine Learning Approaches and Applications in Applied Intelligence for Healthcare Data Analytics Book Review:

"In the last two decades, machine learning has been dramatically developed and is still experiencing a fast and ever-lasting change in paradigm, methodology, applications, and other aspects. This book offers a compendium of current and emerging machine learning paradigms in healthcare informatics and reflects on the diversity and complexity. Machine Learning Approaches and Applications Applied Intelligence for Healthcare Data Analytics presents a variety of techniques design to enhance and empower multi-disciplinary and multi-institutional machine learning research. It provides many case studies and a panoramic view of data and machine learning techniques providing the opportunity for novel insights and discoveries. The book explores the theory and practical applications in healthcare and includes a guided tour of machine learning algorithms, architecture design, along with interdisciplinary challenges. This book is useful to research scholars and students involved in critical condition analysis and computation models"--

Data Analytics in Biomedical Engineering and Healthcare

Data Analytics in Biomedical Engineering and Healthcare
Author: Kun Chang Lee,Sanjiban Sekhar Roy,Pijush Samui,Vijay Kumar
Publsiher: Academic Press
Total Pages: 292
Release: 2020-10-18
ISBN 10: 0128193158
ISBN 13: 9780128193150
Language: EN, FR, DE, ES & NL

Data Analytics in Biomedical Engineering and Healthcare Book Review:

Data Analytics in Biomedical Engineering and Healthcare explores key applications using data analytics, machine learning, and deep learning in health sciences and biomedical data. The book is useful for those working with big data analytics in biomedical research, medical industries, and medical research scientists. The book covers health analytics, data science, and machine and deep learning applications for biomedical data, covering areas such as predictive health analysis, electronic health records, medical image analysis, computational drug discovery, and genome structure prediction using predictive modeling. Case studies demonstrate big data applications in healthcare using the MapReduce and Hadoop frameworks. Examines the development and application of data analytics applications in biomedical data Presents innovative classification and regression models for predicting various diseases Discusses genome structure prediction using predictive modeling Shows readers how to develop clinical decision support systems Shows researchers and specialists how to use hybrid learning for better medical diagnosis, including case studies of healthcare applications using the MapReduce and Hadoop frameworks

Computational Analysis and Deep Learning for Medical Care

Computational Analysis and Deep Learning for Medical Care
Author: Amit Kumar Tyagi
Publsiher: John Wiley & Sons
Total Pages: 528
Release: 2021-08-24
ISBN 10: 1119785723
ISBN 13: 9781119785729
Language: EN, FR, DE, ES & NL

Computational Analysis and Deep Learning for Medical Care Book Review:

This book discuss how deep learning can help healthcare images or text data in making useful decisions”. For that, the need of reliable deep learning models like Neural networks, Convolutional neural network, Backpropagation, Recurrent neural network is increasing in medical image processing, i.e., in Colorization of Black and white images of X-Ray, automatic machine translation, object classification in photographs / images (CT-SCAN), character or useful generation (ECG), image caption generation, etc. Hence, Reliable Deep Learning methods for perception or producing belter results are highly effective for e-healthcare applications, which is the challenge of today. For that, this book provides some reliable deep leaning or deep neural networks models for healthcare applications via receiving chapters from around the world. In summary, this book will cover introduction, requirement, importance, issues and challenges, etc., faced in available current deep learning models (also include innovative deep learning algorithms/ models for curing disease in Medicare) and provide opportunities for several research communities with including several research gaps in deep learning models (for healthcare applications).

Machine Learning and AI for Healthcare

Machine Learning and AI for Healthcare
Author: Arjun Panesar
Publsiher: Apress
Total Pages: 368
Release: 2019-02-04
ISBN 10: 1484237994
ISBN 13: 9781484237991
Language: EN, FR, DE, ES & NL

Machine Learning and AI for Healthcare Book Review:

Explore the theory and practical applications of artificial intelligence (AI) and machine learning in healthcare. This book offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare and big data challenges. You’ll discover the ethical implications of healthcare data analytics and the future of AI in population and patient health optimization. You’ll also create a machine learning model, evaluate performance and operationalize its outcomes within your organization. Machine Learning and AI for Healthcare provides techniques on how to apply machine learning within your organization and evaluate the efficacy, suitability, and efficiency of AI applications. These are illustrated through leading case studies, including how chronic disease is being redefined through patient-led data learning and the Internet of Things. What You'll Learn Gain a deeper understanding of key machine learning algorithms and their use and implementation within wider healthcare Implement machine learning systems, such as speech recognition and enhanced deep learning/AI Select learning methods/algorithms and tuning for use in healthcare Recognize and prepare for the future of artificial intelligence in healthcare through best practices, feedback loops and intelligent agents Who This Book Is For Health care professionals interested in how machine learning can be used to develop health intelligence – with the aim of improving patient health, population health and facilitating significant care-payer cost savings.