Multiscale Modeling of Additively Manufactured Metals

Multiscale Modeling of Additively Manufactured Metals
Author: Yi Zhang,Yeon-Gil Jung,Jing Zhang
Publsiher: Elsevier
Total Pages: 250
Release: 2020-09-15
ISBN 10: 0128196009
ISBN 13: 9780128196007
Language: EN, FR, DE, ES & NL

Multiscale Modeling of Additively Manufactured Metals Book Review:

Multiscale Modeling of Additively Manufactured Metals: Application to Laser Powder Bed Fusion Process provides comprehensive coverage on the latest methodology in additive manufacturing (AM) modeling and simulation. Although there are extensive advances within the AM field, challenges to predictive theoretical and computational approaches still hinder the widespread adoption of AM. The book reviews metal additive materials and processes and discusses multiscale/multiphysics modeling strategies. In addition, coverage of modeling and simulation of AM process in order to understand the process-structure-property relationship is reviewed, along with the modeling of morphology evolution, phase transformation, and defect formation in AM parts. Residual stress, distortion, plasticity/damage in AM parts are also considered, with scales associated with the spatial, temporal and/or material domains reviewed. This book is useful for graduate students, engineers and professionals working on AM materials, equipment, process, development and modeling. Includes the fundamental principles of additive manufacturing modeling techniques Presents various modeling tools/software for AM modeling Discusses various design methods and how to optimize the AM process using these models

Multiscale Modeling of Additively Manufactured Metals

Multiscale Modeling of Additively Manufactured Metals
Author: Yi Zhang,Yeon-Gil Jung,Jing Zhang
Publsiher: Elsevier
Total Pages: 250
Release: 2020-06-29
ISBN 10: 0128225599
ISBN 13: 9780128225592
Language: EN, FR, DE, ES & NL

Multiscale Modeling of Additively Manufactured Metals Book Review:

Multiscale Modeling of Additively Manufactured Metals: Application to Laser Powder Bed Fusion Process provides comprehensive coverage on the latest methodology in additive manufacturing (AM) modeling and simulation. Although there are extensive advances within the AM field, challenges to predictive theoretical and computational approaches still hinder the widespread adoption of AM. The book reviews metal additive materials and processes and discusses multiscale/multiphysics modeling strategies. In addition, coverage of modeling and simulation of AM process in order to understand the process-structure-property relationship is reviewed, along with the modeling of morphology evolution, phase transformation, and defect formation in AM parts. Residual stress, distortion, plasticity/damage in AM parts are also considered, with scales associated with the spatial, temporal and/or material domains reviewed. This book is useful for graduate students, engineers and professionals working on AM materials, equipment, process, development and modeling. Includes the fundamental principles of additive manufacturing modeling techniques Presents various modeling tools/software for AM modeling Discusses various design methods and how to optimize the AM process using these models

Fundamentals of Laser Powder Bed Fusion of Metals

Fundamentals of Laser Powder Bed Fusion of Metals
Author: Igor Yadroitsev,Ina Yadroitsava,Anton Du Plessis,Eric MacDonald
Publsiher: Elsevier
Total Pages: 676
Release: 2021-05-23
ISBN 10: 0128240911
ISBN 13: 9780128240915
Language: EN, FR, DE, ES & NL

Fundamentals of Laser Powder Bed Fusion of Metals Book Review:

Laser powder bed fusion of metals is a technology that makes use of a laser beam to selectively melt metal powder layer-by-layer in order to fabricate complex geometries in high performance materials. The technology is currently transforming aerospace and biomedical manufacturing and its adoption is widening into other industries as well, including automotive, energy, and traditional manufacturing. With an increase in design freedom brought to bear by additive manufacturing, new opportunities are emerging for designs not possible previously and in material systems that now provide sufficient performance to be qualified in end-use mission-critical applications. After decades of research and development, laser powder bed fusion is now enabling a new era of digitally driven manufacturing. Fundamentals of Laser Powder Bed Fusion of Metals will provide the fundamental principles in a broad range of topics relating to metal laser powder bed fusion. The target audience includes new users, focusing on graduate and undergraduate students; however, this book can also serve as a reference for experienced users as well, including senior researchers and engineers in industry. The current best practices are discussed in detail, as well as the limitations, challenges, and potential research and commercial opportunities moving forward. Presents laser powder bed fusion fundamentals, as well as their inherent challenges Provides an up-to-date summary of this advancing technology and its potential Provides a comprehensive textbook for universities, as well as a reference for industry Acts as quick-reference guide

Additive Manufacturing Applications for Metals and Composites

Additive Manufacturing Applications for Metals and Composites
Author: Balasubramanian, K.R.,Senthilkumar, V.
Publsiher: IGI Global
Total Pages: 348
Release: 2020-06-19
ISBN 10: 1799840557
ISBN 13: 9781799840558
Language: EN, FR, DE, ES & NL

Additive Manufacturing Applications for Metals and Composites Book Review:

Additive manufacturing (AM) of metals and composites using laser energy, direct energy deposition, electron beam methods, and wire arc melting have recently gained importance due to their advantages in fabricating the complex structure. Today, it has become possible to reliably manufacture dense parts with certain AM processes for many materials, including steels, aluminum and titanium alloys, superalloys, metal-based composites, and ceramic matrix composites. In the near future, the AM material variety will most likely grow further, with high-performance materials such as intermetallic compounds and high entropy alloys already under investigation. Additive Manufacturing Applications for Metals and Composites is a pivotal reference source that provides vital research on advancing methods and technological developments within additive manufacturing practices. Special attention is paid to the material design of additive manufacturing of parts, the choice of feedstock materials, the metallurgical behavior and synthesis principle during the manufacturing process, and the resulted microstructures and properties, as well as the relationship between these factors. While highlighting topics such as numerical modeling, intermetallic compounds, and statistical techniques, this publication is ideally designed for students, engineers, researchers, manufacturers, technologists, academicians, practitioners, scholars, and educators.

Thermo Mechanical Modeling of Additive Manufacturing

Thermo Mechanical Modeling of Additive Manufacturing
Author: Michael Gouge,Pan Michaleris
Publsiher: Butterworth-Heinemann
Total Pages: 294
Release: 2017-08-03
ISBN 10: 0128118210
ISBN 13: 9780128118214
Language: EN, FR, DE, ES & NL

Thermo Mechanical Modeling of Additive Manufacturing Book Review:

Thermo-mechanical Modeling of Additive Manufacturing provides the background, methodology and description of modeling techniques to enable the reader to perform their own accurate and reliable simulations of any additive process. Part I provides an in depth introduction to the fundamentals of additive manufacturing modeling, a description of adaptive mesh strategies, a thorough description of thermal losses and a discussion of residual stress and distortion. Part II applies the engineering fundamentals to direct energy deposition processes including laser cladding, LENS builds, large electron beam parts and an exploration of residual stress and deformation mitigation strategies. Part III concerns the thermo-mechanical modeling of powder bed processes with a description of the heat input model, classical thermo-mechanical modeling, and part scale modeling. The book serves as an essential reference for engineers and technicians in both industry and academia, performing both research and full-scale production. Additive manufacturing processes are revolutionizing production throughout industry. These technologies enable the cost-effective manufacture of small lot parts, rapid repair of damaged components and construction of previously impossible-to-produce geometries. However, the large thermal gradients inherent in these processes incur large residual stresses and mechanical distortion, which can push the finished component out of engineering tolerance. Costly trial-and-error methods are commonly used for failure mitigation. Finite element modeling provides a compelling alternative, allowing for the prediction of residual stresses and distortion, and thus a tool to investigate methods of failure mitigation prior to building. Provides understanding of important components in the finite element modeling of additive manufacturing processes necessary to obtain accurate results Offers a deeper understanding of how the thermal gradients inherent in additive manufacturing induce distortion and residual stresses, and how to mitigate these undesirable phenomena Includes a set of strategies for the modeler to improve computational efficiency when simulating various additive manufacturing processes Serves as an essential reference for engineers and technicians in both industry and academia

Data Driven Modeling for Additive Manufacturing of Metals

Data Driven Modeling for Additive Manufacturing of Metals
Author: National Academies of Sciences, Engineering, and Medicine,Division on Engineering and Physical Sciences,National Materials and Manufacturing Board,Board on Mathematical Sciences and Analytics
Publsiher: National Academies Press
Total Pages: 78
Release: 2019-11-09
ISBN 10: 0309494206
ISBN 13: 9780309494205
Language: EN, FR, DE, ES & NL

Data Driven Modeling for Additive Manufacturing of Metals Book Review:

Additive manufacturing (AM) is the process in which a three-dimensional object is built by adding subsequent layers of materials. AM enables novel material compositions and shapes, often without the need for specialized tooling. This technology has the potential to revolutionize how mechanical parts are created, tested, and certified. However, successful real-time AM design requires the integration of complex systems and often necessitates expertise across domains. Simulation-based design approaches, such as those applied in engineering product design and material design, have the potential to improve AM predictive modeling capabilities, particularly when combined with existing knowledge of the underlying mechanics. These predictive models have the potential to reduce the cost of and time for concept-to-final-product development and can be used to supplement experimental tests. The National Academies convened a workshop on October 24-26, 2018 to discuss the frontiers of mechanistic data-driven modeling for AM of metals. Topics of discussion included measuring and modeling process monitoring and control, developing models to represent microstructure evolution, alloy design, and part suitability, modeling phases of process and machine design, and accelerating product and process qualification and certification. These topics then led to the assessment of short-, immediate-, and long-term challenges in AM. This publication summarizes the presentations and discussions from the workshop.

Modeling and Optimization in Manufacturing

Modeling and Optimization in Manufacturing
Author: Catalin I. Pruncu,Jun Jiang
Publsiher: John Wiley & Sons
Total Pages: 336
Release: 2021-04-21
ISBN 10: 352782524X
ISBN 13: 9783527825240
Language: EN, FR, DE, ES & NL

Modeling and Optimization in Manufacturing Book Review:

Discover the state-of-the-art in multiscale modeling and optimization in manufacturing from two leading voices in the field Modeling and Optimization in Manufacturing delivers a comprehensive approach to various manufacturing processes and shows readers how multiscale modeling and optimization processes help improve upon them. The book elaborates on the foundations and applications of computational modeling and optimization processes, as well as recent developments in the field. It offers discussions of manufacturing processes, including forming, machining, casting, joining, coating, and additive manufacturing, and how computer simulations have influenced their development. Examples for each category of manufacturing are provided in the text, and industrial applications are described for the reader. The distinguished authors also provide an insightful perspective on likely future trends and developments in manufacturing modeling and optimization, including the use of large materials databases and machine learning. Readers will also benefit from the inclusion of: A thorough introduction to the origins of manufacturing, the history of traditional and advanced manufacturing, and recent progress in manufacturing An exploration of advanced manufacturing and the environmental impact and significance of manufacturing Practical discussions of the economic importance of advanced manufacturing An examination of the sustainability of advanced manufacturing, and developing and future trends in manufacturing Perfect for materials scientists, mechanical engineers, and process engineers, Modeling and Optimization in Manufacturing will also earn a place in the libraries of engineering scientists in industries seeking a one-stop reference on multiscale modeling and optimization in manufacturing.

Uncertainty Quantification in Multiscale Materials Modeling

Uncertainty Quantification in Multiscale Materials Modeling
Author: Yan Wang,David L. McDowell
Publsiher: Woodhead Publishing
Total Pages: 604
Release: 2020-03-10
ISBN 10: 008102942X
ISBN 13: 9780081029428
Language: EN, FR, DE, ES & NL

Uncertainty Quantification in Multiscale Materials Modeling Book Review:

Uncertainty Quantification in Multiscale Materials Modeling provides a complete overview of uncertainty quantification (UQ) in computational materials science. It provides practical tools and methods along with examples of their application to problems in materials modeling. UQ methods are applied to various multiscale models ranging from the nanoscale to macroscale. This book presents a thorough synthesis of the state-of-the-art in UQ methods for materials modeling, including Bayesian inference, surrogate modeling, random fields, interval analysis, and sensitivity analysis, providing insight into the unique characteristics of models framed at each scale, as well as common issues in modeling across scales. Synthesizes available UQ methods for materials modeling Provides practical tools and examples for problem solving in modeling material behavior across various length scales Demonstrates UQ in density functional theory, molecular dynamics, kinetic Monte Carlo, phase field, finite element method, multiscale modeling, and to support decision making in materials design Covers quantum, atomistic, mesoscale, and engineering structure-level modeling and simulation

Precision Metal Additive Manufacturing

Precision Metal Additive Manufacturing
Author: Richard Leach,Simone Carmignato
Publsiher: CRC Press
Total Pages: 404
Release: 2020-09-21
ISBN 10: 0429791275
ISBN 13: 9780429791277
Language: EN, FR, DE, ES & NL

Precision Metal Additive Manufacturing Book Review:

Additive manufacturing (AM) is a fast-growing sector with the ability to evoke a revolution in manufacturing due to its almost unlimited design freedom and its capability to produce personalised parts locally and with efficient material use. AM companies, however, still face technological challenges such as limited precision due to shrinkage, built-in stresses and limited process stability and robustness. Moreover, often post-processing is needed due to high roughness and remaining porosity. Qualified, trained personnel are also in short supply. In recent years, there have been dramatic improvements in AM design methods, process control, post-processing, material properties and material range. However, if AM is going to gain a significant market share, it must be developed into a true precision manufacturing method. The production of precision parts relies on three principles: Production is robust (i.e. all sensitive parameters can be controlled). Production is predictable (for example, the shrinkage that occurs is acceptable because it can be predicted and compensated in the design). Parts are measurable (as without metrology, accuracy, repeatability and quality assurance cannot be known). AM of metals is inherently a high-energy process with many sensitive and inter-related process parameters, making it susceptible to thermal distortions, defects and process drift. The complete modelling of these processes is beyond current computational power, and novel methods are needed to practicably predict performance and inform design. In addition, metal AM produces highly textured surfaces and complex surface features that stretch the limits of contemporary metrology. With so many factors to consider, there is a significant shortage of background material on how to inject precision into AM processes. Shortage in such material is an important barrier for a wider uptake of advanced manufacturing technologies, and a comprehensive book is thus needed. This book aims to inform the reader how to improve the precision of metal AM processes by tackling the three principles of robustness, predictability and metrology, and by developing computer-aided engineering methods that empower rather than limit AM design. Richard Leach is a professor in metrology at the University of Nottingham and heads up the Manufacturing Metrology Team. Prior to this position, he was at the National Physical Laboratory from 1990 to 2014. His primary love is instrument building, from concept to final installation, and his current interests are the dimensional measurement of precision and additive manufactured structures. His research themes include the measurement of surface topography, the development of methods for measuring 3D structures, the development of methods for controlling large surfaces to high resolution in industrial applications and the traceability of X-ray computed tomography. He is a leader of several professional societies and a visiting professor at Loughborough University and the Harbin Institute of Technology. Simone Carmignato is a professor in manufacturing engineering at the University of Padua. His main research activities are in the areas of precision manufacturing, dimensional metrology and industrial computed tomography. He is the author of books and hundreds of scientific papers, and he is an active member of leading technical and scientific societies. He has been chairman, organiser and keynote speaker for several international conferences, and received national and international awards, including the Taylor Medal from CIRP, the International Academy for Production Engineering.

Additive Manufacturing of High performance Metals and Alloys

Additive Manufacturing of High performance Metals and Alloys
Author: Igor Shishkovsky
Publsiher: BoD – Books on Demand
Total Pages: 154
Release: 2018-07-11
ISBN 10: 1789233887
ISBN 13: 9781789233889
Language: EN, FR, DE, ES & NL

Additive Manufacturing of High performance Metals and Alloys Book Review:

Freedoms in material choice based on combinatorial design, different directions of process optimization, and computational tools are a significant advantage of additive manufacturing technology. The combination of additive and information technologies enables rapid prototyping and rapid manufacturing models on the design stage, thereby significantly accelerating the design cycle in mechanical engineering. Modern and high-demand powder bed fusion and directed energy deposition methods allow obtaining functional complex shapes and functionally graded structures. Until now, the experimental parametric analysis remains as the main method during AM optimization. Therefore, an additional goal of this book is to introduce readers to new modeling and material's optimization approaches in the rapidly changing world of additive manufacturing of high-performance metals and alloys.

Additive Manufacturing Second Edition

Additive Manufacturing  Second Edition
Author: Amit Bandyopadhyay,Susmita Bose
Publsiher: CRC Press
Total Pages: 470
Release: 2019-10-16
ISBN 10: 0429881029
ISBN 13: 9780429881022
Language: EN, FR, DE, ES & NL

Additive Manufacturing Second Edition Book Review:

The field of additive manufacturing is growing dynamically as the interest is persisting from manufacturing sector, including other sectors as well. Conceptually, additive manufacturing is a way to build parts without using any part-specific tooling or dies from the computer-aided design (CAD) file of the part. Second edition of Additive Manufacturing highlights the latest advancements in the field, taking an application oriented approach. It includes new material on traditional polymer based rapid prototyping technologies, additive manufacturing of metals and alloys including related design issues. Each chapter comes with suggested reading, questions for instructors and PowerPoint slides.

Additive Manufacturing of Metallic Materials with Controlled Microstructures

Additive Manufacturing of Metallic Materials with Controlled Microstructures
Author: Zackery B. McClelland
Publsiher: Unknown
Total Pages: 148
Release: 2019
ISBN 10: 1928374650XXX
ISBN 13: OCLC:1110109258
Language: EN, FR, DE, ES & NL

Additive Manufacturing of Metallic Materials with Controlled Microstructures Book Review:

Additive Manufacturing Technologies and Applications

Additive Manufacturing Technologies and Applications
Author: Salvatore Brischetto,Paolo Maggiore,Carlo Giovanni Ferro
Publsiher: MDPI
Total Pages: 188
Release: 2018-07-09
ISBN 10: 3038425486
ISBN 13: 9783038425489
Language: EN, FR, DE, ES & NL

Additive Manufacturing Technologies and Applications Book Review:

This book is a printed edition of the Special Issue "Additive Manufacturing Technologies and Applications" that was published in Technologies

Additive Manufacturing of Metals The Technology Materials Design and Production

Additive Manufacturing of Metals  The Technology  Materials  Design and Production
Author: Li Yang,Keng Hsu,Brian Baughman,Donald Godfrey,Francisco Medina,Mamballykalathil Menon,Soeren Wiener
Publsiher: Springer
Total Pages: 168
Release: 2017-05-11
ISBN 10: 3319551280
ISBN 13: 9783319551289
Language: EN, FR, DE, ES & NL

Additive Manufacturing of Metals The Technology Materials Design and Production Book Review:

This book offers a unique guide to the three-dimensional (3D) printing of metals. It covers various aspects of additive, subtractive, and joining processes used to form three-dimensional parts with applications ranging from prototyping to production. Examining a variety of manufacturing technologies and their ability to produce both prototypes and functional production-quality parts, the individual chapters address metal components and discuss some of the important research challenges associated with the use of these technologies. As well as exploring the latest technologies currently under development, the book features unique sections on electron beam melting technology, material lifting, and the importance this science has in the engineering context. Presenting unique real-life case studies from industry, this book is also the first to offer the perspective of engineers who work in the field of aerospace and transportation systems, and who design components and manufacturing networks. Written by the leading experts in this field at universities and in industry, it provides a comprehensive textbook for students and an invaluable guide for practitioners

Structure and Properties of Additive Manufactured Polymer Components

Structure and Properties of Additive Manufactured Polymer Components
Author: Klaus Friedrich,Rolf Walter
Publsiher: Woodhead Publishing
Total Pages: 458
Release: 2020-06-18
ISBN 10: 0128196831
ISBN 13: 9780128196830
Language: EN, FR, DE, ES & NL

Structure and Properties of Additive Manufactured Polymer Components Book Review:

Structure and Properties of Additive Manufactured Polymer Components provides a state-of-the-art review from leading experts in the field who discuss key developments that have appeared over the last decade or so regarding the use of additive manufacturing (AM) methods in the production of neat and reinforced polymeric components. A major focus is given to materials science aspects, i.e., how the quality of the polymer preforms, the parameters of the chosen AM method, and how these factors can affect the microstructure and properties of the final product. The book not only covers production technologies and the relationship between processing, microstructure and fundamental properties of the produced parts, but also gives readers ideas on the use of AM polymer parts in medicine, automotive, aerospace, tribology, electronics, and more. Focuses on industrial aspects and applications Dedicated purely to recent advances in polymer composite additive manufacturing Emphasizes processing, structure and property relationships

Smart Energy Empowerment in Smart and Resilient Cities

Smart Energy Empowerment in Smart and Resilient Cities
Author: Mustapha Hatti
Publsiher: Springer Nature
Total Pages: 703
Release: 2019-12-24
ISBN 10: 3030372073
ISBN 13: 9783030372071
Language: EN, FR, DE, ES & NL

Smart Energy Empowerment in Smart and Resilient Cities Book Review:

International Conference on Artificial Intelligence in Renewable Energetic Systems, IC-AIRES2019, 26-28 November 2019, Taghit-Bechar, Algeria. The challenges of the energy transition in the medium term lead to numerous technological breakthroughs in the areas of production, optimal distribution and the rational use of energy and renewable energy (energy efficiency and optimization of consumption, massive electrification, monitoring and control energy systems, cogeneration and energy recovery processes, new and renewable energies, etc.). The fall in the cost of renewable energies and the desire for a local control of energy production are today calling for a profound change in the electricity system. Local authorities are at the center of energy developments by taking into account the local nature of certain energy systems, heat networks, geothermal energy, waste heat recovery, and electricity generation from household waste. On the other side, digital sciences are at the heart of connected objects and intelligent products that combine information processing and communication capabilities with their environment. Digital technology is at the center of new systems engineering approaches (3D modeling, virtualization, simulation, digital prototyping, etc.) for the design and development of intelligent systems. The book deals with various topics ranging from the design, development and maintenance of energy production systems, transport, distribution or storage of energy, optimization of energy efficiency, especially in the use of energy. innovation in the fields of energy production from renewable energies, management of energy networks: electricity, fluids, gas, district heating, energy storage modes: battery, super-capacitors , overseeing energy supply through supervision, control and diagnosis, risk management, as well as the design and management of smart grids: microgrid, smartgrid. This imposes the model of energy empowerment in the advent of smart cities. Empower the world’s most vulnerable energy-poor citizens and establish growing and vibrant socioeconomic communities, by academics, students in engineering and data computing from around the world who have chosen an academic path leading to an electric power and energy engineering and artificial intelligence to advancing technology for the advantage of humanity.

Multiscale Lattices and Composite Materials Optimal Design Modeling and Characterization

Multiscale Lattices and Composite Materials  Optimal Design  Modeling and Characterization
Author: Fernando Fraternali,Chiara Daraio,Julian J. Rimoli
Publsiher: Frontiers Media SA
Total Pages: 135
Release: 2019-11-26
ISBN 10: 2889631850
ISBN 13: 9782889631858
Language: EN, FR, DE, ES & NL

Multiscale Lattices and Composite Materials Optimal Design Modeling and Characterization Book Review:

Uncertainty Quantification in Multiscale Materials Modeling

Uncertainty Quantification in Multiscale Materials Modeling
Author: Yan Wang,David L. McDowell
Publsiher: Woodhead Publishing Limited
Total Pages: 900
Release: 2020-03-12
ISBN 10: 0081029411
ISBN 13: 9780081029411
Language: EN, FR, DE, ES & NL

Uncertainty Quantification in Multiscale Materials Modeling Book Review:

Uncertainty Quantification in Multiscale Materials Modeling provides a complete overview of uncertainty quantification (UQ) in computational materials science. It provides practical tools and methods along with examples of their application to problems in materials modeling. UQ methods are applied to various multiscale models ranging from the nanoscale to macroscale. This book presents a thorough synthesis of the state-of-the-art in UQ methods for materials modeling, including Bayesian inference, surrogate modeling, random fields, interval analysis, and sensitivity analysis, providing insight into the unique characteristics of models framed at each scale, as well as common issues in modeling across scales.

Laser Based Additive Manufacturing of Metal Parts

Laser Based Additive Manufacturing of Metal Parts
Author: Linkan Bian,Nima Shamsaei,John Usher
Publsiher: CRC Press
Total Pages: 328
Release: 2017-08-09
ISBN 10: 1351647482
ISBN 13: 9781351647489
Language: EN, FR, DE, ES & NL

Laser Based Additive Manufacturing of Metal Parts Book Review:

Laser-Based Additive Manufacturing (LBAM) technologies, hailed by some as the "third industrial revolution," can increase product performance, while reducing time-to-market and manufacturing costs. This book is a comprehensive look at new technologies in LBAM of metal parts, covering topics such as mechanical properties, microstructural features, thermal behavior and solidification, process parameters, optimization and control, uncertainty quantification, and more. The book is aimed at addressing the needs of a diverse cross-section of engineers and professionals.

Multi Scale Continuum Mechanics Modelling of Fibre Reinforced Polymer Composites

Multi Scale Continuum Mechanics Modelling of Fibre Reinforced Polymer Composites
Author: Wim Van Paepegem
Publsiher: Woodhead Publishing
Total Pages: 764
Release: 2020-11-25
ISBN 10: 0128189851
ISBN 13: 9780128189856
Language: EN, FR, DE, ES & NL

Multi Scale Continuum Mechanics Modelling of Fibre Reinforced Polymer Composites Book Review:

Multi-scale modelling of composites is a very relevant topic in composites science. This is illustrated by the numerous sessions in the recent European and International Conferences on Composite Materials, but also by the fast developments in multi-scale modelling software tools, developed by large industrial players such as Siemens (Virtual Material Characterization toolkit and MultiMechanics virtual testing software), MSC/e-Xstream (Digimat software), Simulia (micromechanics plug-in in Abaqus), HyperSizer (Multi-scale design of composites), Altair (Altair Multiscale Designer) This book is intended to be an ideal reference on the latest advances in multi-scale modelling of fibre-reinforced polymer composites, that is accessible for both (young) researchers and end users of modelling software. We target three main groups: This book aims at a complete introduction and overview of the state-of-the-art in multi-scale modelling of composites in three axes: • ranging from prediction of homogenized elastic properties to nonlinear material behaviour • ranging from geometrical models for random packing of unidirectional fibres over meso-scale geometries for textile composites to orientation tensors for short fibre composites • ranging from damage modelling of unidirectionally reinforced composites over textile composites to short fibre-reinforced composites The book covers the three most important scales in multi-scale modelling of composites: (i) micro-scale, (ii) meso-scale and (iii) macro-scale. The nano-scale and related atomistic and molecular modelling approaches are deliberately excluded, since the book wants to focus on continuum mechanics and there are already a lot of dedicated books about polymer nanocomposites. A strong focus is put on physics-based damage modelling, in the sense that the chapters devote attention to modelling the different damage mechanisms (matrix cracking, fibre/matrix debonding, delamination, fibre fracture,...) in such a way that the underlying physics of the initiation and growth of these damage modes is respected. The book also gives room to not only discuss the finite element based approaches for multi-scale modelling, but also much faster methods that are popular in industrial software, such as Mean Field Homogenization methods (based on Mori-Tanaka and Eshelby solutions) and variational methods (shear lag theory and more advanced theories). Since the book targets a wide audience, the focus is put on the most common numerical approaches that are used in multi-scale modelling. Very specialized numerical methods like peridynamics modelling, Material Point Method, eXtended Finite Element Method (XFEM), isogeometric analysis, SPH (Smoothed Particle Hydrodynamics),... are excluded. Outline of the book The book is divided in three large parts, well balanced with each a similar number of chapters: