Executing Data Quality Projects

Executing Data Quality Projects
Author: Danette McGilvray
Publsiher: Elsevier
Total Pages: 352
Release: 2008-09-01
ISBN 10: 0080558399
ISBN 13: 9780080558394
Language: EN, FR, DE, ES & NL

Executing Data Quality Projects Book Review:

Information is currency. Recent studies show that data quality problems are costing businesses billions of dollars each year, with poor data linked to waste and inefficiency, damaged credibility among customers and suppliers, and an organizational inability to make sound decisions. In this important and timely new book, Danette McGilvray presents her “Ten Steps approach to information quality, a proven method for both understanding and creating information quality in the enterprise. Her trademarked approach—in which she has trained Fortune 500 clients and hundreds of workshop attendees—applies to all types of data and to all types of organizations. * Includes numerous templates, detailed examples, and practical advice for executing every step of the “Ten Steps approach. * Allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, and best practices. * A companion Web site includes links to numerous data quality resources, including many of the planning and information-gathering templates featured in the text, quick summaries of key ideas from the Ten Step methodology, and other tools and information available online.

Executing Data Quality Projects

Executing Data Quality Projects
Author: Danette McGilvray
Publsiher: Academic Press
Total Pages: 376
Release: 2021-05-27
ISBN 10: 0128180161
ISBN 13: 9780128180167
Language: EN, FR, DE, ES & NL

Executing Data Quality Projects Book Review:

Executing Data Quality Projects, Second Edition presents a structured yet flexible approach for creating, improving, sustaining and managing the quality of data and information within any organization. Studies show that data quality problems are costing businesses billions of dollars each year, with poor data linked to waste and inefficiency, damaged credibility among customers and suppliers, and an organizational inability to make sound decisions. Help is here! This book describes a proven Ten Step approach that combines a conceptual framework for understanding information quality with techniques, tools, and instructions for practically putting the approach to work – with the end result of high-quality trusted data and information, so critical to today’s data-dependent organizations. The Ten Steps approach applies to all types of data and all types of organizations – for-profit in any industry, non-profit, government, education, healthcare, science, research, and medicine. This book includes numerous templates, detailed examples, and practical advice for executing every step. At the same time, readers are advised on how to select relevant steps and apply them in different ways to best address the many situations they will face. The layout allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, best practices, and warnings. The experience of actual clients and users of the Ten Steps provide real examples of outputs for the steps plus highlighted, sidebar case studies called Ten Steps in Action. This book uses projects as the vehicle for data quality work and the word broadly to include: 1) focused data quality improvement projects, such as improving data used in supply chain management, 2) data quality activities in other projects such as building new applications and migrating data from legacy systems, integrating data because of mergers and acquisitions, or untangling data due to organizational breakups, and 3) ad hoc use of data quality steps, techniques, or activities in the course of daily work. The Ten Steps approach can also be used to enrich an organization’s standard SDLC (whether sequential or Agile) and it complements general improvement methodologies such as six sigma or lean. No two data quality projects are the same but the flexible nature of the Ten Steps means the methodology can be applied to all. The new Second Edition highlights topics such as artificial intelligence and machine learning, Internet of Things, security and privacy, analytics, legal and regulatory requirements, data science, big data, data lakes, and cloud computing, among others, to show their dependence on data and information and why data quality is more relevant and critical now than ever before. Includes concrete instructions, numerous templates, and practical advice for executing every step of The Ten Steps approach Contains real examples from around the world, gleaned from the author’s consulting practice and from those who implemented based on her training courses and the earlier edition of the book Allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, and best practices A companion Web site includes links to numerous data quality resources, including many of the templates featured in the text, quick summaries of key ideas from the Ten Steps methodology, and other tools and information that are available online

Executing Data Quality Projects

Executing Data Quality Projects
Author: Danette McGilvray
Publsiher: Elsevier
Total Pages: 374
Release: 2021-06-11
ISBN 10: 0128180153
ISBN 13: 9780128180150
Language: EN, FR, DE, ES & NL

Executing Data Quality Projects Book Review:

Executing Data Quality Projects, Second Edition presents a structured yet flexible approach for creating, improving, sustaining and managing the quality of data and information within any organization. Studies show that data quality problems are costing businesses billions of dollars each year, with poor data linked to waste and inefficiency, damaged credibility among customers and suppliers, and an organizational inability to make sound decisions. Help is here! This book describes a proven Ten Step approach that combines a conceptual framework for understanding information quality with techniques, tools, and instructions for practically putting the approach to work - with the end result of high-quality trusted data and information, so critical to today's data-dependent organizations. The Ten Steps approach applies to all types of data and all types of organizations - for-profit in any industry, non-profit, government, education, healthcare, science, research, and medicine. This book includes numerous templates, detailed examples, and practical advice for executing every step. At the same time, readers are advised on how to select relevant steps and apply them in different ways to best address the many situations they will face. The layout allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, best practices, and warnings. The experience of actual clients and users of the Ten Steps provide real examples of outputs for the steps plus highlighted, sidebar case studies called Ten Steps in Action. This book uses projects as the vehicle for data quality work and the word broadly to include: 1) focused data quality improvement projects, such as improving data used in supply chain management, 2) data quality activities in other projects such as building new applications and migrating data from legacy systems, integrating data because of mergers and acquisitions, or untangling data due to organizational breakups, and 3) ad hoc use of data quality steps, techniques, or activities in the course of daily work. The Ten Steps approach can also be used to enrich an organization's standard SDLC (whether sequential or Agile) and it complements general improvement methodologies such as six sigma or lean. No two data quality projects are the same but the flexible nature of the Ten Steps means the methodology can be applied to all. The new Second Edition highlights topics such as artificial intelligence and machine learning, Internet of Things, security and privacy, analytics, legal and regulatory requirements, data science, big data, data lakes, and cloud computing, among others, to show their dependence on data and information and why data quality is more relevant and critical now than ever before. Includes concrete instructions, numerous templates, and practical advice for executing every step of The Ten Steps approach Contains real examples from around the world, gleaned from the author's consulting practice and from those who implemented based on her training courses and the earlier edition of the book Allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, and best practices A companion Web site includes links to numerous data quality resources, including many of the templates featured in the text, quick summaries of key ideas from the Ten Steps methodology, and other tools and information that are available online

The Practitioner s Guide to Data Quality Improvement

The Practitioner s Guide to Data Quality Improvement
Author: David Loshin
Publsiher: Elsevier
Total Pages: 432
Release: 2010-11-22
ISBN 10: 9780080920344
ISBN 13: 0080920349
Language: EN, FR, DE, ES & NL

The Practitioner s Guide to Data Quality Improvement Book Review:

The Practitioner's Guide to Data Quality Improvement offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. It shares the fundamentals for understanding the impacts of poor data quality, and guides practitioners and managers alike in socializing, gaining sponsorship for, planning, and establishing a data quality program. It demonstrates how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. It includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning. This book is recommended for data management practitioners, including database analysts, information analysts, data administrators, data architects, enterprise architects, data warehouse engineers, and systems analysts, and their managers. Offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. Shows how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. Includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning.

Data Quality Assessment

Data Quality Assessment
Author: Arkady Maydanchik
Publsiher: Technics Publications
Total Pages: 336
Release: 2007-04-01
ISBN 10: 163462047X
ISBN 13: 9781634620475
Language: EN, FR, DE, ES & NL

Data Quality Assessment Book Review:

Imagine a group of prehistoric hunters armed with stone-tipped spears. Their primitive weapons made hunting large animals, such as mammoths, dangerous work. Over time, however, a new breed of hunters developed. They would stretch the skin of a previously killed mammoth on the wall and throw their spears, while observing which spear, thrown from which angle and distance, penetrated the skin the best. The data gathered helped them make better spears and develop better hunting strategies. Quality data is the key to any advancement, whether it’s from the Stone Age to the Bronze Age. Or from the Information Age to whatever Age comes next. The success of corporations and government institutions largely depends on the efficiency with which they can collect, organize, and utilize data about products, customers, competitors, and employees. Fortunately, improving your data quality doesn’t have to be such a mammoth task. DATA QUALITY ASSESSMENT is a must read for anyone who needs to understand, correct, or prevent data quality issues in their organization. Skipping theory and focusing purely on what is practical and what works, this text contains a proven approach to identifying, warehousing, and analyzing data errors – the first step in any data quality program. Master techniques in: • Data profiling and gathering metadata • Identifying, designing, and implementing data quality rules • Organizing rule and error catalogues • Ensuring accuracy and completeness of the data quality assessment • Constructing the dimensional data quality scorecard • Executing a recurrent data quality assessment This is one of those books that marks a milestone in the evolution of a discipline. Arkady's insights and techniques fuel the transition of data quality management from art to science -- from crafting to engineering. From deep experience, with thoughtful structure, and with engaging style Arkady brings the discipline of data quality to practitioners. David Wells, Director of Education, Data Warehousing Institute

Data Quality

Data Quality
Author: Jack E. Olson
Publsiher: Elsevier
Total Pages: 300
Release: 2003-01-09
ISBN 10: 9780080503691
ISBN 13: 0080503691
Language: EN, FR, DE, ES & NL

Data Quality Book Review:

Data Quality: The Accuracy Dimension is about assessing the quality of corporate data and improving its accuracy using the data profiling method. Corporate data is increasingly important as companies continue to find new ways to use it. Likewise, improving the accuracy of data in information systems is fast becoming a major goal as companies realize how much it affects their bottom line. Data profiling is a new technology that supports and enhances the accuracy of databases throughout major IT shops. Jack Olson explains data profiling and shows how it fits into the larger picture of data quality. * Provides an accessible, enjoyable introduction to the subject of data accuracy, peppered with real-world anecdotes. * Provides a framework for data profiling with a discussion of analytical tools appropriate for assessing data accuracy. * Is written by one of the original developers of data profiling technology. * Is a must-read for any data management staff, IT management staff, and CIOs of companies with data assets.

Measuring Data Quality for Ongoing Improvement

Measuring Data Quality for Ongoing Improvement
Author: Laura Sebastian-Coleman
Publsiher: Newnes
Total Pages: 376
Release: 2012-12-31
ISBN 10: 0123977541
ISBN 13: 9780123977540
Language: EN, FR, DE, ES & NL

Measuring Data Quality for Ongoing Improvement Book Review:

The Data Quality Assessment Framework shows you how to measure and monitor data quality, ensuring quality over time. You’ll start with general concepts of measurement and work your way through a detailed framework of more than three dozen measurement types related to five objective dimensions of quality: completeness, timeliness, consistency, validity, and integrity. Ongoing measurement, rather than one time activities will help your organization reach a new level of data quality. This plain-language approach to measuring data can be understood by both business and IT and provides practical guidance on how to apply the DQAF within any organization enabling you to prioritize measurements and effectively report on results. Strategies for using data measurement to govern and improve the quality of data and guidelines for applying the framework within a data asset are included. You’ll come away able to prioritize which measurement types to implement, knowing where to place them in a data flow and how frequently to measure. Common conceptual models for defining and storing of data quality results for purposes of trend analysis are also included as well as generic business requirements for ongoing measuring and monitoring including calculations and comparisons that make the measurements meaningful and help understand trends and detect anomalies. Demonstrates how to leverage a technology independent data quality measurement framework for your specific business priorities and data quality challenges Enables discussions between business and IT with a non-technical vocabulary for data quality measurement Describes how to measure data quality on an ongoing basis with generic measurement types that can be applied to any situation

Executing Data Quality Projects

Executing Data Quality Projects
Author: Danette McGilvray
Publsiher: Unknown
Total Pages: 329
Release: 2008
ISBN 10: 9788131220412
ISBN 13: 8131220419
Language: EN, FR, DE, ES & NL

Executing Data Quality Projects Book Review:

Data Stewardship

Data Stewardship
Author: David Plotkin
Publsiher: Newnes
Total Pages: 248
Release: 2013-09-16
ISBN 10: 0124104452
ISBN 13: 9780124104457
Language: EN, FR, DE, ES & NL

Data Stewardship Book Review:

Data stewards in business and IT are the backbone of a successful data governance implementation because they do the work to make a company’s data trusted, dependable, and high quality. Data Stewardship explains everything you need to know to successfully implement the stewardship portion of data governance, including how to organize, train, and work with data stewards, get high-quality business definitions and other metadata, and perform the day-to-day tasks using a minimum of the steward’s time and effort. David Plotkin has loaded this book with practical advice on stewardship so you can get right to work, have early successes, and measure and communicate those successes, gaining more support for this critical effort. Provides clear and concise practical advice on implementing and running data stewardship, including guidelines on how to organize based on company structure, business functions, and data ownership Shows how to gain support for your stewardship effort, maintain that support over the long-term, and measure the success of the data stewardship effort and report back to management Includes detailed lists of responsibilities for each type of data steward and strategies to help the Data Governance Program Office work effectively with the data stewards

Corporate Data Quality

Corporate Data Quality
Author: Boris Otto,Hubert Österle
Publsiher: epubli
Total Pages: 329
Release: 2015-12-08
ISBN 10: 3737575932
ISBN 13: 9783737575935
Language: EN, FR, DE, ES & NL

Corporate Data Quality Book Review:

Data is the foundation of the digital economy. Industry 4.0 and digital services are producing so far unknown quantities of data and make new business models possible. Under these circumstances, data quality has become the critical factor for success. This book presents a holistic approach for data quality management and presents ten case studies about this issue. It is intended for practitioners dealing with data quality management and data governance as well as for scientists. The book was written at the Competence Center Corporate Data Quality (CC CDQ) in close cooperation between researchers from the University of St. Gallen and Fraunhofer IML as well as many representatives from more than 20 major corporations. Chapter 1 introduces the role of data in the digitization of business and society and describes the most important business drivers for data quality. It presents the Framework for Corporate Data Quality Management and introduces essential terms and concepts. Chapter 2 presents practical, successful examples of the management of the quality of master data based on ten cases studies that were conducted by the CC CDQ. The case studies cover every aspect of the Framework for Corporate Data Quality Management. Chapter 3 describes selected tools for master data quality management. The three tools have been distinguished through their broad applicability (method for DQM strategy development and DQM maturity assessment) and their high level of innovation (Corporate Data League). Chapter 4 summarizes the essential factors for the successful management of the master data quality and provides a checklist of immediate measures that should be addressed immediately after the start of a data quality management project. This guarantees a quick start into the topic and provides initial recommendations for actions to be taken by project and line managers. Please also check out the book's homepage at http://www.cdq-book.org/

Competing with High Quality Data

Competing with High Quality Data
Author: Rajesh Jugulum
Publsiher: John Wiley & Sons
Total Pages: 304
Release: 2014-03-10
ISBN 10: 111841649X
ISBN 13: 9781118416495
Language: EN, FR, DE, ES & NL

Competing with High Quality Data Book Review:

Create a competitive advantage with data quality Data is rapidly becoming the powerhouse of industry, butlow-quality data can actually put a company at a disadvantage. Tobe used effectively, data must accurately reflect the real-worldscenario it represents, and it must be in a form that is usable andaccessible. Quality data involves asking the right questions,targeting the correct parameters, and having an effective internalmanagement, organization, and access system. It must be relevant,complete, and correct, while falling in line with pervasiveregulatory oversight programs. Competing with High Quality Data: Concepts, Tools andTechniques for Building a Successful Approach to Data Qualitytakes a holistic approach to improving data quality, fromcollection to usage. Author Rajesh Jugulum is globally-recognizedas a major voice in the data quality arena, with high-levelbackgrounds in international corporate finance. In the book,Jugulum provides a roadmap to data quality innovation,covering topics such as: The four-phase approach to data quality control Methodology that produces data sets for different aspects of abusiness Streamlined data quality assessment and issue resolution A structured, systematic, disciplined approach to effectivedata gathering The book also contains real-world case studies to illustrate howcompanies across a broad range of sectors have employed dataquality systems, whether or not they succeeded, and what lessonswere learned. High-quality data increases value throughout theinformation supply chain, and the benefits extend to the client,employee, and shareholder. Competing with High Quality Data:Concepts, Tools and Techniques for Building a Successful Approachto Data Quality provides the information and guidance necessaryto formulate and activate an effective data quality plan today.

Handbook of Data Quality

Handbook of Data Quality
Author: Shazia Sadiq
Publsiher: Springer Science & Business Media
Total Pages: 438
Release: 2013-08-13
ISBN 10: 3642362575
ISBN 13: 9783642362576
Language: EN, FR, DE, ES & NL

Handbook of Data Quality Book Review:

The issue of data quality is as old as data itself. However, the proliferation of diverse, large-scale and often publically available data on the Web has increased the risk of poor data quality and misleading data interpretations. On the other hand, data is now exposed at a much more strategic level e.g. through business intelligence systems, increasing manifold the stakes involved for individuals, corporations as well as government agencies. There, the lack of knowledge about data accuracy, currency or completeness can have erroneous and even catastrophic results. With these changes, traditional approaches to data management in general, and data quality control specifically, are challenged. There is an evident need to incorporate data quality considerations into the whole data cycle, encompassing managerial/governance as well as technical aspects. Data quality experts from research and industry agree that a unified framework for data quality management should bring together organizational, architectural and computational approaches. Accordingly, Sadiq structured this handbook in four parts: Part I is on organizational solutions, i.e. the development of data quality objectives for the organization, and the development of strategies to establish roles, processes, policies, and standards required to manage and ensure data quality. Part II, on architectural solutions, covers the technology landscape required to deploy developed data quality management processes, standards and policies. Part III, on computational solutions, presents effective and efficient tools and techniques related to record linkage, lineage and provenance, data uncertainty, and advanced integrity constraints. Finally, Part IV is devoted to case studies of successful data quality initiatives that highlight the various aspects of data quality in action. The individual chapters present both an overview of the respective topic in terms of historical research and/or practice and state of the art, as well as specific techniques, methodologies and frameworks developed by the individual contributors. Researchers and students of computer science, information systems, or business management as well as data professionals and practitioners will benefit most from this handbook by not only focusing on the various sections relevant to their research area or particular practical work, but by also studying chapters that they may initially consider not to be directly relevant to them, as there they will learn about new perspectives and approaches.

Agile Approaches for Successfully Managing and Executing Projects in the Fourth Industrial Revolution

Agile Approaches for Successfully Managing and Executing Projects in the Fourth Industrial Revolution
Author: Bolat, Hür Bersam,Temur, Gül Tekin
Publsiher: IGI Global
Total Pages: 424
Release: 2019-03-15
ISBN 10: 1522578668
ISBN 13: 9781522578666
Language: EN, FR, DE, ES & NL

Agile Approaches for Successfully Managing and Executing Projects in the Fourth Industrial Revolution Book Review:

Communication between man and machine is vital to completing projects in the current day and age. Without this constant connectiveness as we enter an era of big data, project completion will result in utter failure. Agile Approaches for Successfully Managing and Executing Projects in the Fourth Industrial Revolution addresses changes wrought by Industry 4.0 and its effects on project management as well as adaptations and adjustments that will need to be made within project life cycles and project risk management. Highlighting such topics as agile planning, cloud projects, and organization structure, it is designed for project managers, executive management, students, and academicians.

Data Quality

Data Quality
Author: Rupa Mahanti
Publsiher: Quality Press
Total Pages: 526
Release: 2019-03-18
ISBN 10: 0873899776
ISBN 13: 9780873899772
Language: EN, FR, DE, ES & NL

Data Quality Book Review:

“This is not the kind of book that you’ll read one time and be done with. So scan it quickly the first time through to get an idea of its breadth. Then dig in on one topic of special importance to your work. Finally, use it as a reference to guide your next steps, learn details, and broaden your perspective.” from the foreword by Thomas C. Redman, Ph.D., “the Data Doc” Good data is a source of myriad opportunities, while bad data is a tremendous burden. Companies that manage their data effectively are able to achieve a competitive advantage in the marketplace, while bad data, like cancer, can weaken and kill an organization. In this comprehensive book, Rupa Mahanti provides guidance on the different aspects of data quality with the aim to be able to improve data quality. Specifically, the book addresses: -Causes of bad data quality, bad data quality impacts, and importance of data quality to justify the case for data quality-Butterfly effect of data quality-A detailed description of data quality dimensions and their measurement-Data quality strategy approach-Six Sigma - DMAIC approach to data quality-Data quality management techniques-Data quality in relation to data initiatives like data migration, MDM, data governance, etc.-Data quality myths, challenges, and critical success factorsStudents, academicians, professionals, and researchers can all use the content in this book to further their knowledge and get guidance on their own specific projects. It balances technical details (for example, SQL statements, relational database components, data quality dimensions measurements) and higher-level qualitative discussions (cost of data quality, data quality strategy, data quality maturity, the case made for data quality, and so on) with case studies, illustrations, and real-world examples throughout.

Making Enterprise Information Management EIM Work for Business

Making Enterprise Information Management  EIM  Work for Business
Author: John Ladley
Publsiher: Morgan Kaufmann
Total Pages: 552
Release: 2010-07-03
ISBN 10: 0123756960
ISBN 13: 9780123756961
Language: EN, FR, DE, ES & NL

Making Enterprise Information Management EIM Work for Business Book Review:

Making Enterprise Information Management (EIM) Work for Business: A Guide to Understanding Information as an Asset provides a comprehensive discussion of EIM. It endeavors to explain information asset management and place it into a pragmatic, focused, and relevant light. The book is organized into two parts. Part 1 provides the material required to sell, understand, and validate the EIM program. It explains concepts such as treating Information, Data, and Content as true assets; information management maturity; and how EIM affects organizations. It also reviews the basic process that builds and maintains an EIM program, including two case studies that provide a birds-eye view of the products of the EIM program. Part 2 deals with the methods and artifacts necessary to maintain EIM and have the business manage information. Along with overviews of Information Asset concepts and the EIM process, it discusses how to initiate an EIM program and the necessary building blocks to manage the changes to managed data and content. Organizes information modularly, so you can delve directly into the topics that you need to understand Based in reality with practical case studies and a focus on getting the job done, even when confronted with tight budgets, resistant stakeholders, and security and compliance issues Includes applicatory templates, examples, and advice for executing every step of an EIM program

Assuring Data Quality at U S Geological Survey Laboratories

Assuring Data Quality at U S  Geological Survey Laboratories
Author: National Academies of Sciences, Engineering, and Medicine,Division on Earth and Life Studies,Board on Earth Sciences and Resources,Committee to Review the U.S. Geological Survey's Laboratories
Publsiher: National Academies Press
Total Pages: 88
Release: 2020-01-23
ISBN 10: 0309495628
ISBN 13: 9780309495622
Language: EN, FR, DE, ES & NL

Assuring Data Quality at U S Geological Survey Laboratories Book Review:

The U.S. Geological Survey (USGS) mission is to provide reliable and impartial scientific information to understand Earth, minimize loss of life and property from natural disasters, and manage water, biological, energy, and mineral resources. Data collection, analysis, interpretation, and dissemination are central to everything the USGS does. Among other activities, the USGS operates some 250 laboratories across the country to analyze physical and biological samples, including water, sediment, rock, plants, invertebrates, fish, and wildlife. The data generated in the laboratories help answer pressing scientific and societal questions or support regulation, resource management, or commercial applications. At the request of the USGS, this study reviews a representative sample of USGS laboratories to examine quality management systems and other approaches for assuring the quality of laboratory results and recommends best practices and procedures for USGS laboratories.

Data Driven

Data Driven
Author: Thomas C. Redman
Publsiher: Harvard Business Press
Total Pages: 257
Release: 2008-09-22
ISBN 10: 1422163644
ISBN 13: 9781422163641
Language: EN, FR, DE, ES & NL

Data Driven Book Review:

Your company's data has the potential to add enormous value to every facet of the organization -- from marketing and new product development to strategy to financial management. Yet if your company is like most, it's not using its data to create strategic advantage. Data sits around unused -- or incorrect data fouls up operations and decision making. In Data Driven, Thomas Redman, the "Data Doc," shows how to leverage and deploy data to sharpen your company's competitive edge and enhance its profitability. The author reveals: · The special properties that make data such a powerful asset · The hidden costs of flawed, outdated, or otherwise poor-quality data · How to improve data quality for competitive advantage · Strategies for exploiting your data to make better business decisions · The many ways to bring data to market · Ideas for dealing with political struggles over data and concerns about privacy rights Your company's data is a key business asset, and you need to manage it aggressively and professionally. Whether you're a top executive, an aspiring leader, or a product-line manager, this eye-opening book provides the tools and thinking you need to do that.

Managing Data Quality

Managing Data Quality
Author: Tim King,Julian Schwarzenbach
Publsiher: BCS, The Chartered Institute for IT
Total Pages: 150
Release: 2020-04-27
ISBN 10: 9781780174594
ISBN 13: 1780174594
Language: EN, FR, DE, ES & NL

Managing Data Quality Book Review:

This book explains data quality management in practical terms, focusing on three key areas - the nature of data in enterprises, the purpose and scope of data quality management, and implementing a data quality management system, in line with ISO 8000-61. Examples of good practice in data quality management are also included.

The Enterprise Big Data Lake

The Enterprise Big Data Lake
Author: Alex Gorelik
Publsiher: "O'Reilly Media, Inc."
Total Pages: 224
Release: 2019-02-21
ISBN 10: 1491931507
ISBN 13: 9781491931509
Language: EN, FR, DE, ES & NL

The Enterprise Big Data Lake Book Review:

The data lake is a daring new approach for harnessing the power of big data technology and providing convenient self-service capabilities. But is it right for your company? This book is based on discussions with practitioners and executives from more than a hundred organizations, ranging from data-driven companies such as Google, LinkedIn, and Facebook, to governments and traditional corporate enterprises. You’ll learn what a data lake is, why enterprises need one, and how to build one successfully with the best practices in this book. Alex Gorelik, CTO and founder of Waterline Data, explains why old systems and processes can no longer support data needs in the enterprise. Then, in a collection of essays about data lake implementation, you’ll examine data lake initiatives, analytic projects, experiences, and best practices from data experts working in various industries. Get a succinct introduction to data warehousing, big data, and data science Learn various paths enterprises take to build a data lake Explore how to build a self-service model and best practices for providing analysts access to the data Use different methods for architecting your data lake Discover ways to implement a data lake from experts in different industries

Data Quality

Data Quality
Author: Jack E. Olson
Publsiher: Morgan Kaufmann
Total Pages: 312
Release: 2003-01-09
ISBN 10: 9781558608917
ISBN 13: 1558608915
Language: EN, FR, DE, ES & NL

Data Quality Book Review:

Data Quality: The Accuracy Dimension is about assessing the quality of corporate data and improving its accuracy using the data profiling method. Corporate data is increasingly important as companies continue to find new ways to use it. Likewise, improving the accuracy of data in information systems is fast becoming a major goal as companies realize how much it affects their bottom line. Data profiling is a new technology that supports and enhances the accuracy of databases throughout major IT shops. Jack Olson explains data profiling and shows how it fits into the larger picture of data quality. * Provides an accessible, enjoyable introduction to the subject of data accuracy, peppered with real-world anecdotes. * Provides a framework for data profiling with a discussion of analytical tools appropriate for assessing data accuracy. * Is written by one of the original developers of data profiling technology. * Is a must-read for any data management staff, IT management staff, and CIOs of companies with data assets.