Biomedical Signal Processing and Artificial Intelligence in Healthcare

Biomedical Signal Processing and Artificial Intelligence in Healthcare
Author: Walid A. Zgallai
Publsiher: Academic Press
Total Pages: 268
Release: 2020-07-29
ISBN 10: 0128189479
ISBN 13: 9780128189474
Language: EN, FR, DE, ES & NL

Biomedical Signal Processing and Artificial Intelligence in Healthcare Book Review:

Biomedical Signal Processing and Artificial Intelligence in Healthcare is a new volume in the Developments in Biomedical Engineering and Bioelectronics series. This volume covers the basics of biomedical signal processing and artificial intelligence. It explains the role of machine learning in relation to processing biomedical signals and the applications in medicine and healthcare. The book provides background to statistical analysis in biomedical systems. Several types of biomedical signals are introduced and analyzed, including ECG and EEG signals. The role of Deep Learning, Neural Networks, and the implications of the expansion of artificial intelligence is covered. Biomedical Images are also introduced and processed, including segmentation, classification, and detection. This book covers different aspects of signals, from the use of hardware and software, and making use of artificial intelligence in problem solving. Dr Zgallai’s book has up to date coverage where readers can find the latest information, easily explained, with clear examples and illustrations. The book includes examples on the application of signal and image processing employing artificial intelligence to Alzheimer, Parkinson, ADHD, autism, and sleep disorders, as well as ECG and EEG signals. Developments in Biomedical Engineering and Bioelectronics is a 10-volume series which covers recent developments, trends and advances in this field. Edited by leading academics in the field, and taking a multidisciplinary approach, this series is a forum for cutting-edge, contemporary review articles and contributions from key ‘up-and-coming’ academics across the full subject area. The series serves a wide audience of university faculty, researchers and students, as well as industry practitioners. Coverage of the subject area and the latest advances and applications in biomedical signal processing and Artificial Intelligence. Contributions by recognized researchers and field leaders. On-line presentations, tutorials, application and algorithm examples.

Signal Processing and Machine Learning for Biomedical Big Data

Signal Processing and Machine Learning for Biomedical Big Data
Author: Ervin Sejdic,Tiago H. Falk
Publsiher: CRC Press
Total Pages: 606
Release: 2018-07-04
ISBN 10: 1351061216
ISBN 13: 9781351061216
Language: EN, FR, DE, ES & NL

Signal Processing and Machine Learning for Biomedical Big Data Book Review:

This will be a comprehensive, multi-contributed reference work that will detail the latest research and developments in biomedical signal processing related to big data medical analysis. It will describe signal processing, machine learning, and parallel computing strategies to revolutionize the world of medical analytics and diagnosis as presented by world class researchers and experts in this important field. The chapters will desribe tools that can be used by biomedical and clinical practitioners as well as industry professionals. It will give signal processing researchers a glimpse into the issues faced with Big Medical Data.

Machine Learning in Bio Signal Analysis and Diagnostic Imaging

Machine Learning in Bio Signal Analysis and Diagnostic Imaging
Author: Nilanjan Dey,Surekha Borra,Amira S. Ashour,Fuqian Shi
Publsiher: Academic Press
Total Pages: 345
Release: 2018-11-30
ISBN 10: 012816087X
ISBN 13: 9780128160879
Language: EN, FR, DE, ES & NL

Machine Learning in Bio Signal Analysis and Diagnostic Imaging Book Review:

Machine Learning in Bio-Signal Analysis and Diagnostic Imaging presents original research on the advanced analysis and classification techniques of biomedical signals and images that cover both supervised and unsupervised machine learning models, standards, algorithms, and their applications, along with the difficulties and challenges faced by healthcare professionals in analyzing biomedical signals and diagnostic images. These intelligent recommender systems are designed based on machine learning, soft computing, computer vision, artificial intelligence and data mining techniques. Classification and clustering techniques, such as PCA, SVM, techniques, Naive Bayes, Neural Network, Decision trees, and Association Rule Mining are among the approaches presented. The design of high accuracy decision support systems assists and eases the job of healthcare practitioners and suits a variety of applications. Integrating Machine Learning (ML) technology with human visual psychometrics helps to meet the demands of radiologists in improving the efficiency and quality of diagnosis in dealing with unique and complex diseases in real time by reducing human errors and allowing fast and rigorous analysis. The book's target audience includes professors and students in biomedical engineering and medical schools, researchers and engineers. Examines a variety of machine learning techniques applied to bio-signal analysis and diagnostic imaging Discusses various methods of using intelligent systems based on machine learning, soft computing, computer vision, artificial intelligence and data mining Covers the most recent research on machine learning in imaging analysis and includes applications to a number of domains

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques
Author: Abdulhamit Subasi
Publsiher: Academic Press
Total Pages: 456
Release: 2019-03-16
ISBN 10: 0128176733
ISBN 13: 9780128176733
Language: EN, FR, DE, ES & NL

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques Book Review:

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques: A MATLAB Based Approach presents how machine learning and biomedical signal processing methods can be used in biomedical signal analysis. Different machine learning applications in biomedical signal analysis, including those for electrocardiogram, electroencephalogram and electromyogram are described in a practical and comprehensive way, helping readers with limited knowledge. Sections cover biomedical signals and machine learning techniques, biomedical signals, such as electroencephalogram (EEG), electromyogram (EMG) and electrocardiogram (ECG), different signal-processing techniques, signal de-noising, feature extraction and dimension reduction techniques, such as PCA, ICA, KPCA, MSPCA, entropy measures, and other statistical measures, and more. This book is a valuable source for bioinformaticians, medical doctors and other members of the biomedical field who need a cogent resource on the most recent and promising machine learning techniques for biomedical signals analysis. Provides comprehensive knowledge in the application of machine learning tools in biomedical signal analysis for medical diagnostics, brain computer interface and man/machine interaction Explains how to apply machine learning techniques to EEG, ECG and EMG signals Gives basic knowledge on predictive modeling in biomedical time series and advanced knowledge in machine learning for biomedical time series

Machine Learning and the Internet of Medical Things in Healthcare

Machine Learning and the Internet of Medical Things in Healthcare
Author: Krishna Kant Singh,Mohamed Elhoseny,Akansha Singh,Ahmed Elngar
Publsiher: Academic Press
Total Pages: 332
Release: 2021-04-01
ISBN 10: 012823217X
ISBN 13: 9780128232170
Language: EN, FR, DE, ES & NL

Machine Learning and the Internet of Medical Things in Healthcare Book Review:

Machine Learning and the Internet of Medical Things in Healthcare discusses the applications and challenges of machine learning for healthcare applications. The book provides a platform for presenting machine learning-enabled health care techniques, offering mathematical and conceptual background on the latest technologies and describing machine learning techniques and the emerging platform of Internet of Medical Things used by practitioners and researchers worldwide. It includes sections on deep feed forward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology. Finally, the book offers research perspectives, covering the convergence of machine learning and IoT, along with the application of these technologies. Provides an introduction to the Internet of Medical Things through the principles and applications of Machine Learning Explains the functions and applications of Machine Learning in various applications such as ultrasound imaging, biomedical signal processing, robotics and biomechatronics Includes coverage of the evolution of healthcare applications with Machine Learning, including Clinical Decision Support Systems, Artificial Intelligence in biomedical engineering, and AI-enabled connected health informatics that are all supported by real-world case studies

Signal Processing Techniques for Computational Health Informatics

Signal Processing Techniques for Computational Health Informatics
Author: Md Atiqur Rahman Ahad
Publsiher: Springer Nature
Total Pages: 329
Release:
ISBN 10: 3030549321
ISBN 13: 9783030549329
Language: EN, FR, DE, ES & NL

Signal Processing Techniques for Computational Health Informatics Book Review:

Signal Processing in Medicine and Biology

Signal Processing in Medicine and Biology
Author: Iyad Obeid,Ivan Selesnick,Joseph Picone
Publsiher: Springer Nature
Total Pages: 281
Release: 2020-03-16
ISBN 10: 3030368440
ISBN 13: 9783030368449
Language: EN, FR, DE, ES & NL

Signal Processing in Medicine and Biology Book Review:

This book covers emerging trends in signal processing research and biomedical engineering, exploring the ways in which signal processing plays a vital role in applications ranging from medical electronics to data mining of electronic medical records. Topics covered include statistical modeling of electroencephalograph data for predicting or detecting seizure, stroke, or Parkinson’s; machine learning methods and their application to biomedical problems, which is often poorly understood, even within the scientific community; signal analysis; medical imaging; and machine learning, data mining, and classification. The book features tutorials and examples of successful applications that will appeal to a wide range of professionals and researchers interested in applications of signal processing, medicine, and biology.

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques
Author: Abdulhamit Subasi
Publsiher: Academic Press
Total Pages: 456
Release: 2019-03-16
ISBN 10: 0128176733
ISBN 13: 9780128176733
Language: EN, FR, DE, ES & NL

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques Book Review:

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques: A MATLAB Based Approach presents how machine learning and biomedical signal processing methods can be used in biomedical signal analysis. Different machine learning applications in biomedical signal analysis, including those for electrocardiogram, electroencephalogram and electromyogram are described in a practical and comprehensive way, helping readers with limited knowledge. Sections cover biomedical signals and machine learning techniques, biomedical signals, such as electroencephalogram (EEG), electromyogram (EMG) and electrocardiogram (ECG), different signal-processing techniques, signal de-noising, feature extraction and dimension reduction techniques, such as PCA, ICA, KPCA, MSPCA, entropy measures, and other statistical measures, and more. This book is a valuable source for bioinformaticians, medical doctors and other members of the biomedical field who need a cogent resource on the most recent and promising machine learning techniques for biomedical signals analysis. Provides comprehensive knowledge in the application of machine learning tools in biomedical signal analysis for medical diagnostics, brain computer interface and man/machine interaction Explains how to apply machine learning techniques to EEG, ECG and EMG signals Gives basic knowledge on predictive modeling in biomedical time series and advanced knowledge in machine learning for biomedical time series

Signal and Image Processing Techniques for the Development of Intelligent Healthcare Systems

Signal and Image Processing Techniques for the Development of Intelligent Healthcare Systems
Author: E. Priya,V. Rajinikanth
Publsiher: Springer
Total Pages: 283
Release: 2020-10-23
ISBN 10: 9789811561405
ISBN 13: 9811561400
Language: EN, FR, DE, ES & NL

Signal and Image Processing Techniques for the Development of Intelligent Healthcare Systems Book Review:

This book comprehensively reviews the various automated and semi-automated signal and image processing techniques, as well as deep-learning-based image analysis techniques, used in healthcare diagnostics. It highlights a range of data pre-processing methods used in signal processing for effective data mining in remote healthcare, and discusses pre-processing using filter techniques, noise removal, and contrast-enhanced methods for improving image quality. The book discusses the status quo of artificial intelligence in medical applications, as well as its future. Further, it offers a glimpse of feature extraction methods for reducing dimensionality and extracting discriminatory information hidden in biomedical signals. Given its scope, the book is intended for academics, researchers and practitioners interested in the latest real-world technological innovations.

Handbook of Research on Advancements of Artificial Intelligence in Healthcare Engineering

Handbook of Research on Advancements of Artificial Intelligence in Healthcare Engineering
Author: Sisodia, Dilip Singh,Pachori, Ram Bilas,Garg, Lalit
Publsiher: IGI Global
Total Pages: 420
Release: 2020-02-28
ISBN 10: 1799821226
ISBN 13: 9781799821229
Language: EN, FR, DE, ES & NL

Handbook of Research on Advancements of Artificial Intelligence in Healthcare Engineering Book Review:

Artificial intelligence (AI) is revolutionizing every aspect of human life including human healthcare and wellbeing management. Various types of intelligent healthcare engineering applications have been created that help to address patient healthcare and outcomes such as identifying diseases and gathering patient information. Advancements in AI applications in healthcare continue to be sought to aid rapid disease detection, health monitoring, and prescription drug tracking. TheHandbook of Research on Advancements of Artificial Intelligence in Healthcare Engineering is an essential scholarly publication that provides comprehensive research on the possible applications of machine learning, deep learning, soft computing, and evolutionary computing techniques in the design, implementation, and optimization of healthcare engineering solutions. Featuring a wide range of topics such as genetic algorithms, mobile robotics, and neuroinformatics, this book is ideal for engineers, technology developers, IT consultants, hospital administrators, academicians, healthcare professionals, practitioners, researchers, and students.

Biomedical Signal Processing

Biomedical Signal Processing
Author: Ganesh Naik
Publsiher: Springer Nature
Total Pages: 432
Release: 2019-11-12
ISBN 10: 9811390975
ISBN 13: 9789811390975
Language: EN, FR, DE, ES & NL

Biomedical Signal Processing Book Review:

This book reports on the latest advances in the study of biomedical signal processing, and discusses in detail a number of open problems concerning clinical, biomedical and neural signals. It methodically collects and presents in a unified form the research findings previously scattered throughout various scientific journals and conference proceedings. In addition, the chapters are self-contained and can be read independently. Accordingly, the book will be of interest to university researchers, R&D engineers and graduate students who wish to learn the core principles of biomedical signal analysis, algorithms, and applications, while also offering a valuable reference work for biomedical engineers and clinicians who wish to learn more about the theory and recent applications of neural engineering and biomedical signal processing.

Biomedical Signal and Image Processing in Patient Care

Biomedical Signal and Image Processing in Patient Care
Author: Kolekar, Maheshkumar H.,Kumar, Vinod
Publsiher: IGI Global
Total Pages: 312
Release: 2017-08-11
ISBN 10: 152252830X
ISBN 13: 9781522528302
Language: EN, FR, DE, ES & NL

Biomedical Signal and Image Processing in Patient Care Book Review:

In healthcare systems, medical devices help physicians and specialists in diagnosis, prognosis, and therapeutics. As research shows, validation of medical devices is significantly optimized by accurate signal processing. Biomedical Signal and Image Processing in Patient Care is a pivotal reference source for progressive research on the latest development of applications and tools for healthcare systems. Featuring extensive coverage on a broad range of topics and perspectives such as telemedicine, human machine interfaces, and multimodal data fusion, this publication is ideally designed for academicians, researchers, students, and practitioners seeking current scholarly research on real-life technological inventions.

Recent Advances in Biomedical Signal Processing

Recent Advances in Biomedical Signal Processing
Author: Juan Manuel Górriz,Elmar W. Lang,Javier Ramírez
Publsiher: Bentham Science Publishers
Total Pages: 271
Release: 2011
ISBN 10: 1608052184
ISBN 13: 9781608052189
Language: EN, FR, DE, ES & NL

Recent Advances in Biomedical Signal Processing Book Review:

"Biomedical signal processing is a rapidly expanding field with a wide range of applications, from the construction of artificial limbs and aids for disabilities to the development of sophisticated medical imaging systems. Acquisition and processing of bio"

Classification and Clustering in Biomedical Signal Processing

Classification and Clustering in Biomedical Signal Processing
Author: Dey, Nilanjan
Publsiher: IGI Global
Total Pages: 463
Release: 2016-04-07
ISBN 10: 152250141X
ISBN 13: 9781522501411
Language: EN, FR, DE, ES & NL

Classification and Clustering in Biomedical Signal Processing Book Review:

Advanced techniques in image processing have led to many innovations supporting the medical field, especially in the area of disease diagnosis. Biomedical imaging is an essential part of early disease detection and often considered a first step in the proper management of medical pathological conditions. Classification and Clustering in Biomedical Signal Processing focuses on existing and proposed methods for medical imaging, signal processing, and analysis for the purposes of diagnosing and monitoring patient conditions. Featuring the most recent empirical research findings in the areas of signal processing for biomedical applications with an emphasis on classification and clustering techniques, this essential publication is designed for use by medical professionals, IT developers, and advanced-level graduate students.

Biomedical Signal Analysis for Connected Healthcare

Biomedical Signal Analysis for Connected Healthcare
Author: Sridhar Krishnan
Publsiher: Academic Press
Total Pages: 270
Release: 2019-06-15
ISBN 10: 9780128130865
ISBN 13: 0128130865
Language: EN, FR, DE, ES & NL

Biomedical Signal Analysis for Connected Healthcare Book Review:

Biomedical Signal Analysis for Connected Healthcare provides rigorous coverage on several generations of techniques, including time domain approaches for event detection, spectral analysis for interpretation of clinical events of interest, time-varying signal processing for understanding dynamical aspects of complex biomedical systems, the application of machine learning principles in enhanced clinical decision-making, the application of sparse techniques and compressive sensing in providing low-power applications that are essential for wearable designs, the emerging paradigms of the Internet of Things, and connected healthcare. Provides comprehensive coverage of biomedical engineering, technologies, and healthcare applications of various physiological signals Covers vital signals, including ECG, EEG, EMG and body sounds Includes case studies and MATLAB code for selected applications

Computational Intelligence in Biomedical Engineering

Computational Intelligence in Biomedical Engineering
Author: Rezaul Begg,Daniel T.H. Lai,Marimuthu Palaniswami
Publsiher: CRC Press
Total Pages: 392
Release: 2007-12-04
ISBN 10: 9781420005899
ISBN 13: 1420005898
Language: EN, FR, DE, ES & NL

Computational Intelligence in Biomedical Engineering Book Review:

As in many other fields, biomedical engineers benefit from the use of computational intelligence (CI) tools to solve complex and non-linear problems. The benefits could be even greater if there were scientific literature that specifically focused on the biomedical applications of computational intelligence techniques. The first comprehensive field-specific reference, Computational Intelligence in Biomedical Engineering provides a unique look at how techniques in CI can offer solutions in modelling, relationship pattern recognition, clustering, and other problems particular to the field. The authors begin with an overview of signal processing and machine learning approaches and continue on to introduce specific applications, which illustrate CI’s importance in medical diagnosis and healthcare. They provide an extensive review of signal processing techniques commonly employed in the analysis of biomedical signals and in the improvement of signal to noise ratio. The text covers recent CI techniques for post processing ECG signals in the diagnosis of cardiovascular disease and as well as various studies with a particular focus on CI’s potential as a tool for gait diagnostics. In addition to its detailed accounts of the most recent research, Computational Intelligence in Biomedical Engineering provides useful applications and information on the benefits of applying computation intelligence techniques to improve medical diagnostics.

Data Mining and Medical Knowledge Management Cases and Applications

Data Mining and Medical Knowledge Management  Cases and Applications
Author: Berka, Petr,Rauch, Jan,Zighed, Djamel Abdelkader
Publsiher: IGI Global
Total Pages: 464
Release: 2009-02-28
ISBN 10: 1605662194
ISBN 13: 9781605662190
Language: EN, FR, DE, ES & NL

Data Mining and Medical Knowledge Management Cases and Applications Book Review:

The healthcare industry produces a constant flow of data, creating a need for deep analysis of databases through data mining tools and techniques resulting in expanded medical research, diagnosis, and treatment. Data Mining and Medical Knowledge Management: Cases and Applications presents case studies on applications of various modern data mining methods in several important areas of medicine, covering classical data mining methods, elaborated approaches related to mining in electroencephalogram and electrocardiogram data, and methods related to mining in genetic data. A premier resource for those involved in data mining and medical knowledge management, this book tackles ethical issues related to cost-sensitive learning in medicine and produces theoretical contributions concerning general problems of data, information, knowledge, and ontologies.

Computational Intelligence in Biomedical Engineering

Computational Intelligence in Biomedical Engineering
Author: Rezaul Begg,Daniel T.H. Lai,Marimuthu Palaniswami
Publsiher: CRC Press
Total Pages: 392
Release: 2007-12-04
ISBN 10: 9781420005899
ISBN 13: 1420005898
Language: EN, FR, DE, ES & NL

Computational Intelligence in Biomedical Engineering Book Review:

As in many other fields, biomedical engineers benefit from the use of computational intelligence (CI) tools to solve complex and non-linear problems. The benefits could be even greater if there were scientific literature that specifically focused on the biomedical applications of computational intelligence techniques. The first comprehensive field-specific reference, Computational Intelligence in Biomedical Engineering provides a unique look at how techniques in CI can offer solutions in modelling, relationship pattern recognition, clustering, and other problems particular to the field. The authors begin with an overview of signal processing and machine learning approaches and continue on to introduce specific applications, which illustrate CI’s importance in medical diagnosis and healthcare. They provide an extensive review of signal processing techniques commonly employed in the analysis of biomedical signals and in the improvement of signal to noise ratio. The text covers recent CI techniques for post processing ECG signals in the diagnosis of cardiovascular disease and as well as various studies with a particular focus on CI’s potential as a tool for gait diagnostics. In addition to its detailed accounts of the most recent research, Computational Intelligence in Biomedical Engineering provides useful applications and information on the benefits of applying computation intelligence techniques to improve medical diagnostics.

Biomedical Image Analysis and Machine Learning Technologies Applications and Techniques

Biomedical Image Analysis and Machine Learning Technologies  Applications and Techniques
Author: Gonzalez, Fabio A.,Romero, Eduardo
Publsiher: IGI Global
Total Pages: 390
Release: 2009-12-31
ISBN 10: 1605669571
ISBN 13: 9781605669571
Language: EN, FR, DE, ES & NL

Biomedical Image Analysis and Machine Learning Technologies Applications and Techniques Book Review:

Medical images are at the base of many routine clinical decisions and their influence continues to increase in many fields of medicine. Since the last decade, computers have become an invaluable tool for supporting medical image acquisition, processing, organization and analysis. Biomedical Image Analysis and Machine Learning Technologies: Applications and Techniques provides a panorama of the current boundary between biomedical complexity coming from the medical image context and the multiple techniques which have been used for solving many of these problems. This innovative publication serves as a leading industry reference as well as a source of creative ideas for applications of medical issues.

Biomedical Signal and Image Processing

Biomedical Signal and Image Processing
Author: Kayvan Najarian,Robert Splinter
Publsiher: CRC Press
Total Pages: 411
Release: 2016-04-19
ISBN 10: 1439870349
ISBN 13: 9781439870341
Language: EN, FR, DE, ES & NL

Biomedical Signal and Image Processing Book Review:

Written for senior-level and first year graduate students in biomedical signal and image processing, this book describes fundamental signal and image processing techniques that are used to process biomedical information. The book also discusses application of these techniques in the processing of some of the main biomedical signals and images, such as EEG, ECG, MRI, and CT. New features of this edition include the technical updating of each chapter along with the addition of many more examples, the majority of which are MATLAB based.