2D Nanomaterials for Energy Applications

2D Nanomaterials for Energy Applications
Author: Spyridon Zafeiratos
Publsiher: Elsevier
Total Pages: 352
Release: 2019-11-22
ISBN 10: 0128168897
ISBN 13: 9780128168899
Language: EN, FR, DE, ES & NL

2D Nanomaterials for Energy Applications Book Review:

2D Nanomaterials for Energy Applications: Graphene and Beyond discusses the current state-of-the art of 2D nanomaterials used in energy-related applications. Sections cover nanogenerators, hydrogen storage and theoretical design. Each chapter focuses on a different energy application, thus allowing readers to gain a greater understanding of the most promising 2D materials in the field. The book's ultimate goal lies in describing how each energy technology is beneficial, hence it provides a valuable reference source for materials scientists and engineers. The physical and chemical properties of 2D materials can be effectively tuned through different strategies, such as controlling dimensions, the crystallographic structure and defects, or doping with heteroatoms. This flexibility facilitates the design of 2D materials for dedicated applications in the field of energy conversion and storage. Offers a single source for the major practical applications of 2D materials in the field of energy conversion and storage Explores how 2D materials are being used to create new, more efficient industrial energy products and devices Compares a variety of 2D materials, showing how the properties of a range of these materials make them beneficial for specific energy applications

Inorganic Two dimensional Nanomaterials

Inorganic Two dimensional Nanomaterials
Author: Changzheng Wu
Publsiher: Royal Society of Chemistry
Total Pages: 428
Release: 2017-08-22
ISBN 10: 1782624651
ISBN 13: 9781782624653
Language: EN, FR, DE, ES & NL

Inorganic Two dimensional Nanomaterials Book Review:

Inorganic 2D nanomaterials, or inorganic graphene analogues, are gaining great attention due to their unique properties and potential energy applications. They contain ultrathin nanosheet morphology with one-dimensional confinement, but unlike pure carbon graphene, inorganic two-dimensional nanomaterials have a more abundant elemental composition and can form different crystallographic structures. These properties contribute to their unique chemical reaction activity, tunable physical properties and facilitate applications in the field of energy conversion and storage. Inorganic Two-dimensional Nanomaterials details the development of the nanostructures from computational simulation and theoretical understanding to their synthesis and characterization. Individual chapters then cover different applications of the materials as electrocatalysts, flexible supercapicitors, flexible lithium ion batteries and thermoelectrical devices. The book provides a comprehensive overview of the field for researchers working in the areas of materials chemistry, physics, energy and catalysis.

Two dimensional Materials

Two dimensional Materials
Author: Pramoda Kumar Nayak
Publsiher: BoD – Books on Demand
Total Pages: 280
Release: 2016-08-31
ISBN 10: 9535125540
ISBN 13: 9789535125549
Language: EN, FR, DE, ES & NL

Two dimensional Materials Book Review:

There are only a few discoveries and new technologies in materials science that have the potential to dramatically alter and revolutionize our material world. Discovery of two-dimensional (2D) materials, the thinnest form of materials to ever occur in nature, is one of them. After isolation of graphene from graphite in 2004, a whole other class of atomically thin materials, dominated by surface effects and showing completely unexpected and extraordinary properties, has been created. This book provides a comprehensive view and state-of-the-art knowledge about 2D materials such as graphene, hexagonal boron nitride (h-BN), transition metal dichalcogenides (TMD) and so on. It consists of 11 chapters contributed by a team of experts in this exciting field and provides latest synthesis techniques of 2D materials, characterization and their potential applications in energy conservation, electronics, optoelectronics and biotechnology.

Nanomaterials for Sustainable Energy

Nanomaterials for Sustainable Energy
Author: Quan Li
Publsiher: Springer
Total Pages: 590
Release: 2016-05-12
ISBN 10: 3319320238
ISBN 13: 9783319320236
Language: EN, FR, DE, ES & NL

Nanomaterials for Sustainable Energy Book Review:

This book presents the unique mechanical, electrical, and optical properties of nanomaterials, which play an important role in the recent advances of energy-related applications. Different nanomaterials have been employed in energy saving, generation, harvest, conversion, storage, and transport processes very effectively and efficiently. Recent progress in the preparation, characterization and usage of 1D, 2D nanomaterials and hybrid architectures for energy-related applications and relevant technologies and devices, such as solar cells, thermoelectronics, piezoelectronics, solar water splitting, hydrogen production/storage, fuel cells, batteries, and supercapacitors is covered. Moreover, the book also highlights novel approaches in nanomaterials design and synthesis and evaluating materials sustainability issues. Contributions from active and leading experts regarding important aspects like the synthesis, assembly, and properties of nanomaterials for energy-related applications are compiled into a reference book. As evident from the diverse topics, the book will be very valuable to researchers working in the intersection of physics, chemistry, biology, materials science and engineering. It may set the standard and stimulates future developments in this rapidly emerging fertile frontier of nanomaterials for energy.

Fundamentals and Sensing Applications of 2D Materials

Fundamentals and Sensing Applications of 2D Materials
Author: Chandra Sekhar Rout,Dattatray Late,Hywel Morgan
Publsiher: Woodhead Publishing
Total Pages: 512
Release: 2019-06-15
ISBN 10: 0081025785
ISBN 13: 9780081025789
Language: EN, FR, DE, ES & NL

Fundamentals and Sensing Applications of 2D Materials Book Review:

Fundamentals and Sensing Applications of 2D Materials provides a comprehensive understanding of a wide range of 2D materials. Examples of fundamental topics include: defect and vacancy engineering, doping and advantages of 2D materials for sensing, 2D materials and composites for sensing, and 2D materials in biosystems. A wide range of applications are addressed, such as gas sensors based on 2D materials, electrochemical glucose sensors, biosensors (enzymatic and non-enzymatic), and printed, stretchable, wearable and flexible biosensors. Due to their sub-nanometer thickness, 2D materials have a high packing density, thus making them suitable for the fabrication of thin film based sensor devices. Benefiting from their unique physical and chemical properties (e.g. strong mechanical strength, high surface area, unparalleled thermal conductivity, remarkable biocompatibility and ease of functionalization), 2D layered nanomaterials have shown great potential in designing high performance sensor devices. Provides a comprehensive overview of 2D materials systems that are relevant to sensing, including transition metal dichalcogenides, metal oxides, graphene and other 2D materials system Includes information on potential applications, such as flexible sensors, biosensors, optical sensors, electrochemical sensors, and more Discusses graphene in terms of the lessons learned from this material for sensing applications and how these lessons can be applied to other 2D materials

2D Materials

2D Materials
Author: Craig E. Banks,Dale A. C. Brownson
Publsiher: CRC Press
Total Pages: 236
Release: 2018-06-27
ISBN 10: 149874740X
ISBN 13: 9781498747400
Language: EN, FR, DE, ES & NL

2D Materials Book Review:

Most reference texts covering two-dimensional materials focus specifically on graphene, when in reality, there are a host of new two-dimensional materials poised to overtake graphene. This book provides an authoritative source of information on twodimensional materials covering a plethora of fields and subjects and outlining all two-dimensional materials in terms of their fundamental understanding, synthesis, and applications.

Emerging 2D Materials and Devices for the Internet of Things

Emerging 2D Materials and Devices for the Internet of Things
Author: Li Tao,Deji Akinwande
Publsiher: Elsevier
Total Pages: 348
Release: 2020-06-12
ISBN 10: 012818387X
ISBN 13: 9780128183878
Language: EN, FR, DE, ES & NL

Emerging 2D Materials and Devices for the Internet of Things Book Review:

Emerging 2D Materials and Devices for the Internet of Things: Information, Sensing and Energy Applications summarizes state-of-the-art technologies in applying 2D layered materials, discusses energy and sensing device applications as essential infrastructure solutions, and explores designs that will make internet-of-things devices faster, more reliable and more accessible for the creation of mass-market products. The book focuses on information, energy and sensing applications, showing how different types of 2D materials are being used to create a new generation of products and devices that harness the capabilities of wireless technology in an eco-efficient, reliable way. This book is an important resource for both materials scientists and engineers, who are designing new wireless products in a variety of industry sectors. Explores how 2D materials are being used to create faster and more reliable wireless network solutions Discusses how graphene-based nanocomposites are being used for energy harvesting and storage applications Outlines the major challenges for integrating 2D materials in electronic sensing devices

Fundamentals and Supercapacitor Applications of 2D Materials

Fundamentals and Supercapacitor Applications of 2D Materials
Author: Chandra Sekhar Rout,Dattatray J. Late
Publsiher: Elsevier
Total Pages: 414
Release: 2021-05-04
ISBN 10: 0128219947
ISBN 13: 9780128219942
Language: EN, FR, DE, ES & NL

Fundamentals and Supercapacitor Applications of 2D Materials Book Review:

Fundamentals and Applications of Supercapacitor 2D Materials covers different aspects of supercapacitor 2D materials, including their important properties, synthesis, and recent developments in supercapacitor applications of engineered 2D materials. In addition, theoretical investigations and various types of supercapacitors based on 2D materials such as symmetric, asymmetric, flexible, and micro-supercapacitors are covered. This book is a useful resource for research scientists, engineers, and students in the fields of supercapacitors, 2D nanomaterials, and energy storage devices. Due to their sub-nanometer thickness, 2D materials have a high packing density, which is suitable for the fabrication of highly-packed energy supplier/storage devices with enhanced energy and power density. The flexibility of 2D materials, and their good mechanical properties and high packing densities, make them suitable for the development of thin, flexible, and wearable devices. Explores recent developments and looks at the importance of 2D materials in energy storage technologies Presents both the theoretical and DFT related studies Discusses the impact on performance of various operating conditions Includes a brief overview of the applications of supercapacitors in various industries, including aerospace, defense, biomedical, environmental, energy, and automotive

2D Materials for Nanophotonics

2D Materials for Nanophotonics
Author: Young Min Jhon,Ju Han Lee
Publsiher: Elsevier
Total Pages: 412
Release: 2020-11-29
ISBN 10: 0128186593
ISBN 13: 9780128186596
Language: EN, FR, DE, ES & NL

2D Materials for Nanophotonics Book Review:

2D Materials for Nanophotonics presents a detailed overview of the applications of 2D materials for nanophotonics, covering the photonic properties of a range of 2D materials including graphene, 2D phosphorene and MXenes, and discussing applications in lighting and energy storage. This comprehensive reference is ideal for readers seeking a detailed and critical analysis of how 2D materials are being used for a range of photonic and optical applications. Outlines the major photonic properties in a variety of 2D materials Demonstrates major applications in lighting and energy storage Explores the challenges of using 2D materials in photonics

Two Dimensional Carbon

Two Dimensional Carbon
Author: Wu Yihong,Shen Zexiang,Yu Ting
Publsiher: CRC Press
Total Pages: 346
Release: 2014-04-09
ISBN 10: 9814411957
ISBN 13: 9789814411950
Language: EN, FR, DE, ES & NL

Two Dimensional Carbon Book Review:

After a brief introduction to the fundamental properties of graphene, this book focuses on synthesis, characterization and application of various types of two-dimensional (2D) nanocarbons ranging from single/few layer graphene to carbon nanowalls and graphene oxides. Three major synthesis techniques are covered: epitaxial growth of graphene on SiC,

Nanomaterials for Sustainable Energy and Environmental Remediation

Nanomaterials for Sustainable Energy and Environmental Remediation
Author: Mu. Naushad,R. Saravanan,Raju Kumar
Publsiher: Elsevier
Total Pages: 402
Release: 2020-03-14
ISBN 10: 0128193565
ISBN 13: 9780128193563
Language: EN, FR, DE, ES & NL

Nanomaterials for Sustainable Energy and Environmental Remediation Book Review:

Nanostructured materials, especially, 1D, 2D and 3D nanostructures, and their engineered architectures are being increasingly used due to their potential to achieve sustainable development in energy and environmental sectors, providing a solution to a range of global challenges. A huge amount of research has been devoted in the recent past on the fine-tuning of nano-architecutres to accomplish innovations in energy storage and conversions, i.e., batteries, supercapacitors, fuel cells, solar cells, and electrochromic devices, bifunctional catalysts for ORR and OER, gas to fuels, liquid to fuels, and photocatalysts, corrosion, electrochemical sensors, and pollution and contaminants removal. Nanomaterials for Sustainable Energy and Environmental Remediation describes the fundamental aspects of a diverse range of nanomaterials for the sustainable development in energy and environmental remediation in a comprehensive manner. Experimental studies of varies nanomaterials will be discussed along with their design and applications, with specific attention to various chemical reactions involving and their challenges for catalysis, energy storage and conversion systems, and removal of pollutants are addressed. This book will also emphasise the challenges with past developments and direction for further research, details pertaining to the current ground - breaking technology and future perspective with multidisciplinary approach on energy, nanobiotechnology and environmental science Summarizes the latest advances in how nanotechnology is being used in energy and environmental science Outlines the major challenges to using nanomaterials for creating new products and devices in the sustainable energy and environmental sectors Helps materials scientists and engineers make selection and design decisions regarding which nanomaterial to use when creating new produts and evices for energy and environmental applications

Emerging Nanostructured Materials for Energy and Environmental Science

Emerging Nanostructured Materials for Energy and Environmental Science
Author: Saravanan Rajendran,Mu. Naushad,Kumar Raju,Rabah Boukherroub
Publsiher: Springer
Total Pages: 565
Release: 2019-02-07
ISBN 10: 3030044742
ISBN 13: 9783030044749
Language: EN, FR, DE, ES & NL

Emerging Nanostructured Materials for Energy and Environmental Science Book Review:

This book provides the fundamental aspects of the diverse ranges of nanostructured materials (0D, 1D, 2D and 3D) for energy and environmental applications in a comprehensive manner written by specialists who are at the forefront of research in the field of energy and environmental science. Experimental studies of nanomaterials for aforementioned applications are discussed along with their design, fabrication and their applications, with a specific focus on catalysis, energy storage and conversion systems. This work also emphasizes the challenges of past developments and directions for further research. It also looks at details pertaining to the current ground – breaking of nanotechnology and future perspectives with a multidisciplinary approach to energy and environmental science and informs readers about an efficient utilization of nanomaterials to deliver solutions for the public.

2D Nanoscale Heterostructured Materials

2D Nanoscale Heterostructured Materials
Author: Satyabrata Jit,Santanu Das
Publsiher: Elsevier
Total Pages: 284
Release: 2020-05-09
ISBN 10: 0128176792
ISBN 13: 9780128176795
Language: EN, FR, DE, ES & NL

2D Nanoscale Heterostructured Materials Book Review:

2D Nanoscale Heterostructured Materials: Synthesis, Properties, and Applications assesses the current status and future prospects for 2D materials other than graphene (e.g., BN nanosheets, MoS2, NbSe2, WS2, etc.) that have already been contemplated for both low-end and high-end technological applications. The book offers an overview of the different synthesis techniques for 2D materials and their heterostructures, with a detailed explanation of the many potential future applications. It provides an informed overview and fundamentals properties related to the 2D Transition metal dichalcogenide materials and their heterostructures. The book helps researchers to understand the progress of this field and points the way to future research in this area. Explores synthesis techniques of newly evolved 2D materials and their heterostructures with controlled properties Offers detailed analysis of the fundamental properties (via various experimental process and simulations techniques) of 2D heterostructures materials Discusses the applications of 2D heterostructured materials in various high-performance devices

Materials for Energy

Materials for Energy
Author: Sam Zhang
Publsiher: CRC Press
Total Pages: 514
Release: 2020-10-06
ISBN 10: 1000176711
ISBN 13: 9781000176711
Language: EN, FR, DE, ES & NL

Materials for Energy Book Review:

Materials for Energy offers a comprehensive overview of the latest developments in materials for efficient and sustainable energy applications, including energy conversion, storage, and smart applications. Discusses a wide range of material types, such as nanomaterials, carbonaceous electrocatalysts and electrolytes, thin films, phase change materials, 2D energy materials, triboelectric materials, and membrane materials Describes applications that include flexible energy storage devices, sensors, energy storage batteries, fuel and solar cells, photocatalytic wastewater treatment, and more Highlights current developments in energy conversion, storage, and applications from a materials angle Aimed at researchers, engineers, and technologists working to solve alternative energy issues, this work illustrates the state of the art and latest technologies in this important field.

Functional Materials for Sustainable Energy Applications

Functional Materials for Sustainable Energy Applications
Author: J A Kilner,S J Skinner,S J C Irvine,P P Edwards
Publsiher: Elsevier
Total Pages: 708
Release: 2012-09-28
ISBN 10: 0857096370
ISBN 13: 9780857096371
Language: EN, FR, DE, ES & NL

Functional Materials for Sustainable Energy Applications Book Review:

Global demand for low cost, efficient and sustainable energy production is ever increasing. Driven by recent discoveries and innovation in the science and technology of materials, applications based on functional materials are becoming increasingly important. Functional materials for sustainable energy applications provides an essential guide to the development and application of these materials in sustainable energy production. Part one reviews functional materials for solar power, including silicon-based, thin-film, and dye sensitized photovoltaic solar cells, thermophotovoltaic device modelling and photoelectrochemical cells. Part two focuses on functional materials for hydrogen production and storage. Functional materials for fuel cells are then explored in part three where developments in membranes, catalysts and membrane electrode assemblies for polymer electrolyte and direct methanol fuel cells are discussed, alongside electrolytes and ion conductors, novel cathodes, anodes, thin films and proton conductors for solid oxide fuel cells. Part four considers functional materials for demand reduction and energy storage, before the book concludes in part five with an investigation into computer simulation studies of functional materials. With its distinguished editors and international team of expert contributors, Functional materials for sustainable energy applications is an indispensable tool for anyone involved in the research, development, manufacture and application of materials for sustainable energy production, including materials engineers, scientists and academics in the rapidly developing, interdisciplinary field of sustainable energy. An essential guide to the development and application of functional materials in sustainable energy production Reviews functional materials for solar power Focuses on functional materials for hydrogen production and storage, fuel cells, demand reduction and energy storage

Two Dimensional Nanostructures for Biomedical Technology

Two Dimensional Nanostructures for Biomedical Technology
Author: Raju Khan,Shaswat Barua
Publsiher: Elsevier
Total Pages: 330
Release: 2019-11-05
ISBN 10: 0128176512
ISBN 13: 9780128176511
Language: EN, FR, DE, ES & NL

Two Dimensional Nanostructures for Biomedical Technology Book Review:

Two Dimensional Nanostructures for Biomedical Technology: A Bridge between Materials Science and Bioengineering helps researchers to understand the promising aspects of two dimensional nanomaterials. Sections cover the biomedical applications of such nanostructures in terms of their precursors, structures, morphology and size. Further, detailed synthetic methodologies guide the reader towards the efficient generation of two dimensional nanostructures. The book encompasses the vital aspects of two dimensional nanomaterials in context of their utility in biomedical technology, thus presenting a thorough guide for researchers in this area. Details the latest on the structure, morphology and shape-size accords of two dimensional nanomaterials Includes synthetic strategies with feasibility for sustainability Reports on two dimensional nanostructures in biomedical technology, including bio-imaging, biosensing, drug delivery and tissue engineering

Holey 2D Nanomaterials for Electrochemical Energy Storage

Holey 2D Nanomaterials for Electrochemical Energy Storage
Author: Anonim
Publsiher: Unknown
Total Pages: 329
Release: 2017
ISBN 10:
ISBN 13: OCLC:1051369255
Language: EN, FR, DE, ES & NL

Holey 2D Nanomaterials for Electrochemical Energy Storage Book Review:

Abstract: 2D nanomaterials provide numerous fascinating properties, such as abundant active surfaces and open ion diffusion channels, which enable fast transport and storage of lithium ions and beyond. However, decreased active surfaces, prolonged ion transport pathway, and sluggish ion transport kinetics caused by self‐restacking of 2D nanomaterials during electrode assembly remain a major challenge to build high‐performance energy storage devices with simultaneously maximized energy and power density as well as long cycle life. To address the above challenge, porosity (or hole) engineering in 2D nanomaterials has become a promising strategy to enable porous 2D nanomaterials with synergetic features combining both 2D nanomaterials and porous architectures. Herein, recent important progress on porous/holey 2D nanomaterials for electrochemical energy storage is reviewed, starting with the introduction of synthetic strategies of porous/holey 2D nanomaterials, followed by critical discussion of design rule and their advantageous features. Thereafter, representative work on porous/holey 2D nanomaterials for electrochemical capacitors, lithium‐ion and sodium‐ion batteries, and other emerging battery technologies (lithium‐sulfur and metal‐air batteries) are presented. The article concludes with perspectives on the future directions for porous/holey 2D nanomaterial in energy storage and conversion applications. Abstract : Holey 2D nanomaterials have shown great promise to address several key challenges of decreased active surfaces, prolonged ion transport pathway, and sluggish ion transport kinetics caused by self‐restacking of 2D materials. Recent progress of porous 2D nanomaterials, in terms of the synthetic strategies and their applications in electrochemical energy storage, as well as the future development are summarized.

Graphene based Nanotechnologies for Energy and Environmental Applications

Graphene based Nanotechnologies for Energy and Environmental Applications
Author: Mohammad Jawaid,Akil Ahmad,David Lokhat
Publsiher: Elsevier
Total Pages: 446
Release: 2019-08-02
ISBN 10: 0128158123
ISBN 13: 9780128158128
Language: EN, FR, DE, ES & NL

Graphene based Nanotechnologies for Energy and Environmental Applications Book Review:

Graphene-Based Nanotechnologies for Energy and Environmental Applications explores how graphene-based materials are being used to make more efficient, reliable products and devices for energy storage and harvesting and environmental monitoring and purification. The book outlines the major sustainable, recyclable, and eco-friendly methods for using a range of graphene-based materials in innovative ways. It represents an important information source for materials scientists and engineers who want to learn more about the use of graphene-based nanomaterials to create the next generation of products and devices in energy and environmental science. Graphene-based nanotechnologies are at the heart of some of the most exciting developments in the fields of energy and environmental research. Graphene has exceptional properties, which are being used to create more effective products for electronic systems, environmental sensing devices, energy storage, electrode materials, fuel cell, novel nano-sorbents, membrane and photocatalytic degradation of environmental pollutants especially in the field of water and wastewater treatment. Covers synthesis, preparation and application of graphene based nanomaterials from different sources Demonstrates systematic approaches to the design, synthesis, characterization and applications of graphene-based nanocomposites in order to establish their important relationship with end-user applications Discusses the challenges in ensuring reliability and scalability of graphene-based nanotechnologies

Layered 2D Materials and Their Allied Applications

Layered 2D Materials and Their Allied Applications
Author: Inamuddin,Rajender Boddula,Mohd Imran Ahamed,Abdullah M. Asiri
Publsiher: John Wiley & Sons
Total Pages: 400
Release: 2020-06-16
ISBN 10: 1119654963
ISBN 13: 9781119654964
Language: EN, FR, DE, ES & NL

Layered 2D Materials and Their Allied Applications Book Review:

Ever since the discovery of graphene, two-dimensional layered materials (2DLMs) have been the central tool of the materials research community. The reason behind their importance is their superlative and unique electronic, optical, physical, chemical and mechanical properties in layered form rather than in bulk form. The 2DLMs have been applied to electronics, catalysis, energy, environment, and biomedical applications. The following topics are discussed in the book’s fifteen chapters: • The research status of the 2D metal-organic frameworks and the different techniques used to synthesize them. • 2D black phosphorus (BP) and its practical application in various fields. • Reviews the synthesis methods of MXenes and provides a detailed discussion of their structural characterization and physical, electrochemical and optical properties, as well as applications in catalysis, energy storage, environmental management, biomedicine, and gas sensing. • The carbon-based materials and their potential applications via the photocatalytic process using visible light irradiation. • 2D materials like graphene, TMDCs, few-layer phosphorene, MXene in layered form and their heterostructures. • The structure and applications of 2D perovskites. • The physical parameters of pristine layered materials, ZnO, transition metal dichalcogenides, and heterostructures of layered materials are discussed. • The coupling of graphitic carbon nitride with various metal sulfides and oxides to form efficient heterojunction for water purification. • The structural features, synthetic methods, properties, and different applications and properties of 2D zeolites. • The methods for synthesizing 2D hollow nanostructures are featured and their structural aspects and potential in medical and non-medical applications. • The characteristics and structural aspects of 2D layered double hydroxides (LDHs) and the various synthesis methods and role of LDH in non-medical applications as adsorbent, sensor, catalyst, etc. • The synthesis of graphene-based 2D layered materials synthesized by using top-down and bottom-up approaches where the main emphasis is on the hot-filament thermal chemical vapor deposition (HFTCVD) method. • The different properties of 2D h-BN and borophene and the various methods being used for the synthesis of 2D h-BN, along with their growth mechanism and transfer techniques. • The physical properties and current progress of various transition metal dichalcogenides (TMDC) based on photoactive materials for photoelectrochemical (PEC) hydrogen evolution reaction. • The state-of-the-art of 2D layered materials and associated devices, such as electronic, biosensing, optoelectronic, and energy storage applications.

Emerging Materials for Energy Conversion and Storage

Emerging Materials for Energy Conversion and Storage
Author: Kuan Yew Cheong,Giuliana Impellizzeri,Mariana Amorim Fraga
Publsiher: Elsevier
Total Pages: 488
Release: 2018-08-09
ISBN 10: 0128137959
ISBN 13: 9780128137956
Language: EN, FR, DE, ES & NL

Emerging Materials for Energy Conversion and Storage Book Review:

Emerging Materials for Energy Conversion and Storage presents the state-of-art of emerging materials for energy conversion technologies (solar cells and fuel cells) and energy storage technologies (batteries, supercapacitors and hydrogen storage). The book is organized into five primary sections, each with three chapters authored by worldwide experts in the fields of materials science, physics, chemistry and engineering. It covers the fundamentals, functionalities, challenges and prospects of different classes of emerging materials, such as wide bandgap semiconductors, oxides, carbon-based nanostructures, advanced ceramics, chalcogenide nanostructures, and flexible organic electronics nanomaterials. The book is an important reference for students and researchers (from academics, but also industry) interested in understanding the properties of emerging materials. Explores the fundamentals, challenges and prospects for the application of emerging materials in the development of energy conversion and storage devices Presents a discussion of solar cell and photovoltaic, fuel cell, battery electrode, supercapacitor and hydrogen storage applications Includes notable examples of energy devices based on emerging materials to illustrate recent advances in this field